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Abstract— This paper proposes a differentially private
gradient-tracking-based distributed stochastic optimization
algorithm over directed graphs. In particular, privacy noises
are incorporated into each agent’s state and tracking vari-
able to mitigate information leakage, after which the per-
turbed states and tracking variables are transmitted to
neighbors. We design two novel schemes for the step-
sizes and the sampling number within the algorithm. The
sampling parameter-controlled subsampling method em-
ployed by both schemes enhances the differential privacy
level, and ensures a finite cumulative privacy budget even
over infinite iterations. The algorithm achieves both almost
sure and mean square convergence for nonconvex ob-
jectives. Furthermore, when nonconvex objectives satisfy
the Polyak-Łojasiewicz condition, Scheme (S1) achieves a
polynomial mean square convergence rate, and Scheme
(S2) achieves an exponential mean square convergence
rate. The trade-off between privacy and convergence is
presented. The effectiveness of the algorithm and its supe-
rior performance compared to existing works are illustrated
through numerical examples of distributed training on the
benchmark datasets “MNIST” and “CIFAR-10”.

Index Terms— Differential privacy, distributed stochastic
optimization, gradient-tracking, exponential mean square
convergence rate, directed graphs.

I. INTRODUCTION

D ISTRIBUTED optimization allows cooperative agents
to compute and update their state variables through

inter-agent communication to obtain an optimal solution of
a common optimization problem ([1]). Distributed stochastic
optimization, a branch of distributed optimization, address
scenarios where objectives are stochastic ([2]). This approach
has found extensive applications across multiple domains,
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including distributed machine learning ([3]), cloud-based con-
trol systems ( [4]), and the Internet of Things ( [5]). While
it is frequently utilized in distributed stochastic optimization
because of its adaptability in communication-efficient methods
( [6]) and simplicity in algorithm structure ( [7]), stochastic
gradient descent (SGD) does not guarantee the convergence
over directed graphs ( [8, Eq. 6]), and cannot achieve the
exponential convergence rate ( [9, Th. 2], [10, Eq. 2]). To
address these issues, the gradient-tracking method has been
proposed over undirected graphs ([11], [12]). By developing
tracking variables to track global stochastic gradients, [11]–
[13] initially achieve the exponential convergence rate. The
convergence analysis is further extended to directed graphs
in [14]–[17]. However, [14]–[16] prove convergence under
the assumption that weight matrices are row- and column-
stochastic, which is often difficult to be satisfied in various
practical scenarios (see e.g. [4], [5]). [17] achieves the con-
vergence by employing the two-time-scale step-sizes method,
which removes the assumption that weight matrices are row-
and column-stochastic, while requiring that the level sets of
objectives are bounded.

When cooperative agents exchange information to address
a distributed stochastic optimization problem, adversaries can
infer stochastic gradients from the exchanged information, and
further obtain agents’ sensitive information through model
inversion attacks ([18], [19]). To address this issue, various
privacy-preserving techniques have been developed ( [20]),
such as homomorphic encryption ([21]), state decomposition
([22]), random coupling weights ([23]), uncoordinated step-
sizes ([24]), network augmentation ([25]), and adding noises (
[26]–[28]). Because of its simplicity of use and immunity to
post-processing, differential privacy ([27], [28]) has attracted
considerable interest and has been extensively applied in
distributed optimization for both deterministic and stochas-
tic objectives. When objectives are deterministic, based on
the gradient-tracking method, differentially private distributed
optimization has been well developed in [29]–[34]. Among
others, [29]–[32], [34] have successfully achieved the finite
cumulative differential privacy budget over infinite iterations.
However, the difficulty caused by stochastic objectives makes
the methods in [29]–[34] unsuitable to differentially private
distributed stochastic optimization. In addition, to achieve
convergence, (strongly) convex objectives ([29]–[32], [34]) and
nonconvex objectives with the Polyak-Łojasiewicz condition (
[33]) are required. However, these requirements may be hard
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to be satisfied or verified in practice.
When objectives are stochastic, a method based on SGD has

been proposed for differentially private distributed stochastic
optimization. Some interesting works can be found in [35]–
[41]. However, [35]–[41] only give the per-iteration differential
privacy budget, and thus, cannot protect the sensitive infor-
mation over infinite iterations. Fortunately, by sequentially
acquiring data samples in distributed online learning ([42]),
the time-varying sampling number method ( [43]) and the
sampling parameter-controlled subsampling method ( [44]),
the finite cumulative differential privacy budget over infinite
iterations is given. In [42]–[44], the differential privacy is
tailored for distributed SGD, and the convergence is given over
undirected graphs. Although the gradient-tracking method has
shown advantages over the distributed-SGD method regarding
the convergence over directed graphs, to the best of our knowl-
edge, differentially private gradient-tracking-based distributed
stochastic optimization has not been studied yet. As a result,
the differentially private distributed stochastic optimization
based on the gradient-tracking method is a challenging issue,
especially on how to achieve the finite cumulative differential
privacy budget even over infinite iterations, the almost sure and
mean square convergence for nonconvex objectives without
the Polyak-Łojasiewicz condition, and the exponential mean
square convergence rate.

Summarizing the discussion above, we propose a new differ-
entially private gradient-tracking-based distributed stochastic
optimization algorithm with two schemes of step-sizes and
the sampling number over directed graphs. Scheme (S1) em-
ploys the polynomially decreasing step-sizes and the increas-
ing sampling number with the maximum iteration number.
Scheme (S2) employs constant step-sizes and the exponentially
increasing sampling number with the maximum iteration num-
ber. The main contribution of this paper is as follows:
• The sampling parameter-controlled subsampling method is

employed to enhance the differential privacy level of the
algorithm. The algorithm with both schemes achieves the fi-
nite cumulative differential privacy budget even over infinite
iterations. To the best of our knowledge, a finite cumulative
differential privacy budget over infinite iterations is achieved
in differentially private gradient-tracking-based distributed
stochastic optimization for the first time.

• The almost sure and mean square convergence of the
algorithm are given for nonconvex objectives without the
Polyak-Łojasiewicz condition. Furthermore, when noncon-
vex objectives satisfy the Polyak-Łojasiewicz condition, the
polynomial mean square convergence rate is achieved for
Scheme (S1), and the exponential mean square convergence
rate is achieved for Scheme (S2).

• Two schemes are shown to achieve the finite cumulative
differential privacy budget over infinite iterations and mean
square convergence simultaneously. For Scheme (S1), the
polynomial mean square convergence rate and the cumula-
tive differential privacy budget are achieved simultaneously
even over infinite iterations for general privacy noises,
including decreasing, constant and increasing privacy noises.
For Scheme (S2), the exponential mean square convergence
rate and the cumulative differential privacy budget are

achieved simultaneously even over infinite iterations.
The remainder of this paper is organized as follows: Sec-

tion II presents preliminaries and the problem formulation.
Section III provides the algorithm with its convergence and
privacy analysis. Section IV verifies the effectiveness of the
algorithm through numerical examples of distributed training
on the benchmark datasets “MNIST” and “CIFAR-10”. Fi-
nally, Section V concludes the paper.

Notation. R and Rn denote the set of real numbers and
n-dimensional Euclidean space, respectively. 1n denotes a n-
dimensional vector whose elements are all 1, and ∥x∥ denotes
the standard Euclidean norm of a vector x. X ∼ Lap(b) refers
to a random variable that has a Laplacian distribution with
the variance parameter b > 0, and the probability density
function of the random variable X is given by p(x; b) =
1
2b exp

(
− |x|

b

)
. For a matrix A ∈ Rn×n, A⊤, ρA stand for

its transpose and spectral radius, respectively. ⟨·, ·⟩ denotes
the inner product. (Ω,F ,P) denotes a probability space, P(B)
and EX stand for the probability of an event B ∈ F and the
expectation of the random variable X , respectively. ⊗ denotes
the Kronecker product of matrices. ⌊z⌋ denotes the largest
integer which is not larger than z. For a differentiable function
f(x), ∇f(x) denotes its gradient at the point x. For a vector
x = [x1, x2, . . . , xn]

⊤ ∈ Rn, the notation diag(x) denotes the
diagonal matrix with diagonal elements being x1, x2, . . . , xn.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph theory
In this paper, we consider a network of n agents which

exchange the information over two different directed graphs
GR = (V, ER) and GC = (V, EC). V = {1, 2, . . . , n} is
the set of all agents, and ER, EC are sets of directed edges
in GR, GC , respectively. In our gradient-tracking algorithm,
agents exchange state variables over GR and tracking variables
over GC . Directed graphs GR and GC are induced by the
weight matrix R = (Rij)i,j=1,...,n and C = (Cij)i,j=1,...,n,
respectively. Any element Rij of R is either strictly positive if
Agent i can receive Agent j’s state variable, or 0, otherwise.
The same property holds for any element Cij of C. For any
i ∈ V , its in-neighbor and out-neighbor set of over GR are
defined as N−

R,i = {j ∈ V : Rij > 0, j ̸= i} and N+
R,i =

{j ∈ V : Rji > 0, j ̸= i}, respectively. Similarly, Agent i’s
in-neighbor and out-neighbor set over GC are defined as N−

C,i

and N+
C,i, respectively. Denote the in-Laplacian matrix of R

and the out-Laplacian matrix of C as L1 = diag(R · 1n)−R
and L2 = diag(1⊤

nC)−C, respectively. Then, the assumption
about directed graphs GR, GC is given as follows:

Assumption 1: Let GR and GC⊤ be directed graphs induced
by nonnegative matrices R and C⊤, respectively. Then, both
GR and GC⊤ contain at least one spanning tree. Moreover,
there exists at least one agent being a root of spanning trees
in both GR and GC⊤ .

Remark 1: Directed graphs in Assumption 1 are more gen-
eral than undirected connected graphs in [6], [10]–[13], [29],
[33], [35]–[40], [42]–[44], directed graphs with stochastic
weight matrices in [14]–[16], and strongly connected directed
graphs in [17], [23]. In addition, by [45, Th. 3.8], Assumption
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1 is a necessary condition for the consensus of Agents’ state
and tracking variables.
Based on Assumption 1, we have the following useful lemma
for weight matrices R and C:

Lemma 1: ([1, Lemmas 1, 3]) Let αK , βK be positive
constants such that In−αKL1 and In−βKL2 are nonnegative
matrices. If Assumption 1 holds, then we have the following
statements:
(i) There exist unique nonnegative vectors v1, v2 ∈ Rn such
that v⊤1 (In −αKL1) = v⊤1 , (In − βKL2)v2 = v2, v⊤1 1n = n,
v⊤2 1n = n, v⊤1 v2 > 0.
(ii) There exist rL1

, rL2
> 0 such that the spectral radius of

the matrices In − αKL1 − 1
n1nv

⊤
1 and In − βKL2 − 1

nv21
⊤
n

are 1− αKrL1
and 1− βKrL2

, respectively.

B. Problem formulation

In this paper, the following distributed stochastic optimiza-
tion problem is considered:

min
x∈Rd

F (x)= min
x∈Rd

1

n

n∑
i=1

fi(x), fi(x)=Eξi∼Di
[ℓi(x, ξi)], (1)

where x is available to all agents, ℓi(x, ξi) is a local objective
which is private to Agent i, ξi is a random variable drawn
from an unknown probability distribution Di, and Di is not
required to be independent and identically distributed for any
i ∈ V . In practice, since the probability distribution Di

is difficult to obtain, it is usually replaced by the dataset
Di = {ξi,l, l = 1, . . . , D}. Then, (1) can be rewritten as the
following empirical risk minimization problem:

min
x∈Rd

F (x)= min
x∈Rd

1

n

n∑
i=1

fi(x), fi(x)=
1

D

D∑
l=1

ℓi(x, ξi,l). (2)

To solve the problem (2), we need the following standard
assumption:

Assumption 2: (i) For any i ∈ V , there exists L > 0 such
that fi is L-smooth, i.e., ∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥,
∀x, y ∈ Rd.
(ii) There exists σg > 0 and a stochastic first-order oracle such
that for any i ∈ V , x ∈ Rd and λi generated by uniformly
sampling ξi from Di, the stochastic first-order oracle returns a
sampled gradient gi(x, λi) satisfying E[gi(x, λi)] = ∇fi(x),
E[∥gi(x, λi)−∇fi(x)∥2] ≤ σ2

g .
Remark 2: Assumption 2(i) requires that each objective fi

has L-Lipschitz continuous gradients, which is commonly
used (see e.g. [1], [7], [10]–[17], [23], [29], [31]–[33], [35]–
[44]). Assumption 2(ii) requires that each sampled gradient
gi(x, λi) is unbiased with a bounded variance σ2

g , which is
standard for distributed stochastic optimization (see e.g. [10]–
[14], [16], [17], [35], [37], [39], [40], [42]–[44]).

Next, assumptions for the nonconvex and strongly convex
global objective are respectively given as follows:

Assumption 3: There exists x∗ ∈ Rd such that
F (x∗) is the global minimum of the nonconvex global
objective F (x). Moreover, the Polyak-Łojasiewicz
condition holds, i.e., there exists µ > 0 such that
2µ(F (x)− F (x∗)) ≤ ∥∇F (x)∥2, ∀x ∈ Rd.

Remark 3: Assumption 3 requires the gradient ∇F (x) to
grow faster than a quadratic function as we move away from

the global minimum, which is commonly used (see e.g. [7],
[16], [33], [36], [44]).

Remark 4: There exists functions that satisfy Assumptions
2, 3 simultaneously. We give two examples. One example is
li(x, ξi) =

1
2n∥Ax− d∥2 + ∥x∥ξi

1+∥x∥ , where x ∈ Rd, the matrix
A ∈ Rm×d has full column rank, d ∈ Rd is a constant vector,
and ξi ∼ N(0, 4) is a Gaussian noise. Denote ρA,ΘA⊤A > 0
as the spectral radius of A and the minimum eigenvalue of
A⊤A, respectively. Then, by [46, Th. 2] fi(x) = 1

2n∥Ax −
d∥2 satisfies Assumption 2 with L =

ρ2
A

2n , σg = 2, and F (x)
satisfies Assumption 3 with µ = 2Θ2

A⊤A. Another example is
li(x, ξi) = x2+(3+ξi)(sinx)

2+2ξi cosx, where x ∈ R, and
ξi ∼ Lap( 12 ) is a Laplacian noise. Then, by [46, Subsec. 2.2],
fi(x) = x2 + 3(sinx)2 satisfies Assumption 2 with L = 8,
σg = 5

2 , and F (x) satisfies Assumption 3 with µ = n
32 .

In practice, since finding the exact optimal solution is
computationally expensive and time-consuming, suboptimal
solutions within a given error φ > 0 are often preferred.
Inspired by [2], the φ-suboptimal solution and the oracle
complexity are defined as follows:

Definition 1: Let φ > 0, K = 0, 1, . . . , xK=[x⊤1,K , . . . ,
x⊤n,K ]⊤ be the output of an algorithm. Then, xK is a φ-
suboptimal solution if E∥∇F (xi,K+1)∥2 < φ, ∀i ∈ V .

Definition 2: Let φ > 0, N(φ) = min{K : xK is a φ-
suboptimal solution}, and mk be the sampling number at the
k-th iteration. Then, the oracle complexity of the algorithm is∑N(φ)

k=0 mk.

C. Differential privacy

As shown in [38], [39], [42], there are two kinds of
adversary models widely used in the privacy-preserving issue
for distributed stochastic optimization:

• A semi-honest adversary. This kind of adversary is defined
as an agent within the network which has access to certain
internal information (such as state variable xi,k and tracking
variable yi,k of Agent i), follows the prescribed protocols
and accurately computes iterative state and tracking cor-
rectly. However, it aims to infer the sensitive information
of other agents.

• An eavesdropper. This kind of adversary refers to an ex-
ternal adversary who has capability to wiretap and moni-
tor all communication channels, allowing them to capture
distributed messages from any agent. This enables the
eavesdropper to infer the sensitive information of agents.

When cooperative agents exchange information to solve the
empirical risk minimization problem (2), these two kinds of
adversaries can use the model inversion attack ([18]) to infer
sampled gradients, and further obtain the sensitive information
in agents’ data samples from sampled gradients ([19]). In order
to provide the privacy protection for data samples, a symmetric
binary relation called adjacency relation is defined as follows:

Definition 3: ([44]) Let D = {ξi,l, i ∈ V, l = 1, . . . , D},
D′={ξ′i,l, i ∈ V, l = 1, . . . , D} be two sets of data samples.
If for a given C > 0, there exists exactly one pair of data



4

samples ξi0,l0 , ξ
′
i0,l0

in D,D′ such that for any x ∈ Rr,{
0<∥gi(x, ξi,l)−gi(x, ξ′i,l)∥≤C, if i = i0 and l = l0;

∥gi(x, ξi,l)−gi(x, ξ′i,l)∥=0, if i ̸= i0 or l ̸= l0,
(3)

then D and D′ are said to be adjacent, denoted by Adj(D,D′).
Remark 5: The boundary C characterizes the “closeness”

of a pair of data samples ξi0,l0 , ξ′i0,l0 . The larger the boundary
C is, the larger the allowed magnitude of sampled gradients
between adjacent datasets is. For more details, please refer
to [44, Subsec. II-D].

Remark 6: Different from the adjacency relation defined
in differentially private distributed optimization ( [29]–[34]),
Definition 3 is given by allowing one data sample of one
agent to be different, which is commonly used in differentially
private distributed stochastic optimization ([35]–[44]).

Next, the definition of differential privacy is given to show
the privacy-preserving level of the algorithm:

Definition 4: ([28]) Let ε ≥ 0 be the differential privacy bud-
get. Then, the randomized algorithm M achieves ε-differential
privacy for Adj(D,D′) if P(M(D)∈O)≤ eεP(M(D′)∈O)
holds for any observation set O⊆Range(M).

Remark 7: As shown in [35]–[44], the differential privacy
budget ε measure the similarity of the randomized algorithm
M’s output distributions under two adjacent datasets D, D′.
The smaller the differential privacy budget ε is, the higher the
differential privacy level is.

Remark 8: Both ε-differential privacy and (ε, δ)-differential
privacy has been used in differentially private distributed
stochastic optimization. ε-differential privacy is usually
achieved by Laplacian noises, while (ε, δ)-differential pri-
vacy is usually achieved by Gaussian noises. To simplify
the analysis, ε-differential privacy is used in this paper. If
(ε, δ)-differential privacy is used, then the framework of the
convergence and privacy analysis still holds.

Problem of interest: In this paper, we first aim to propose
a new differentially private gradient-tracking-based algorithm
for the problem (2) over directed graphs; then design schemes
of step-sizes and the sampling number to enhance the differ-
ential privacy level, achieve the almost sure and mean square
convergence for nonconvex objectives without the Polyak-
Łojasiewicz condition, and further accelerate the convergence
rate.

III. MAIN RESULTS

A. The proposed algorithm

In this subsection, we propose a differentially private
gradient-tracking-based distributed stochastic optimization al-
gorithm over directed graphs. Detailed steps are given in
Algorithm 1.

For the convenience of the analysis, let xk = [x⊤1,k, . . . ,

x⊤n,k]
⊤ yk = [y⊤1,k, . . . , y

⊤
n,k]

⊤, ζk = [ζ⊤1,k, . . . , ζ
⊤
n,k]

⊤, ηk =

[η⊤1,k, . . . , η
⊤
n,k]

⊤, gk = [g⊤1,k, . . . , g
⊤
n,k]

⊤. Then, (4) and (6)
can be written in the following compact form:

xk+1=((In−αKL1)⊗Id)xk−αK(L1⊗Id)ζk−γKyk, (7)
yk+1=((In−βKL2)⊗Id)yk−βK(L2⊗Id)ηk+gk+1−gk. (8)

Algorithm 1 Differentially private gradient-tracking-based dis-
tributed stochastic optimization algorithm over directed graphs

Initialization: xi,0 ∈ Rd for any i ∈ V , mK different
data samples λi,0,1, . . . , λi,0,mK

in Di, yi,0 = gi,0 =
1

mK

∑mK

l=1 gi(xi,0, λi,0,l) for any i ∈ V , weight matrices
R = (Rij)i,j=1,...,n, C = (Cij)i,j=1,...,n, the maximum
iteration number K, step-sizes αK , βK , γK and the sam-
pling number mK .

for k = 0, 1, . . . ,K, do
1: Agent i adds independent d-dimensional Laplacian noises
ζi,k, ηi,k to its state variable xi,k and tracking variable
yi,k, respectively: x̆i,k = xi,k + ζi,k, y̆i,k = yi,k + ηi,k,
where each coordinate of ζi,k, ηi,k has the distribution
Lap(σ(ζ)

k ) and Lap(σ(η)
k ), respectively.

2: Agent i broadcasts its perturbed state variable x̆i,k to all
its out-neighbors in N+

R,i, and broadcasts its perturbed
tracking variable y̆i,k to all its out-neighbors in N+

C,i.
3: Agent i receives x̆j,k from all its in-neighbors in N−

R,i and
y̆j,k from all its in-neighbors in N−

C,i.
4: Agent i updates its state variable by
xi,k+1=(1−αK

∑
j∈N−

R,i

Rij)xi,k+αK

∑
j∈N−

R,i

Rij x̆j,k−γKyi,k. (4)

5: Agent i takes mK different samples λi,k+1,1, . . . ,
λi,k+1,mK

uniformly from Di to generate sampled gradi-
ents gi(xi,k+1, λi,k+1,1), . . . , gi(xi,k+1, λi,k+1,mK

). Then,
Agent i puts these data samples back into Di.

6: Agent i computes the averaged sampled gradient by

gi,k+1 =
1

mK

mK∑
l=1

gi(xi,k+1, λi,k+1,l). (5)

7: Agent i updates its tracking variable by
yi,k+1=(1−βK

∑
j∈N−

C,i

Cij)yi,k+βK
∑

j∈N−
C,i

Cij y̆j,k+gi,k+1−gi,k. (6)

end for
Return x1,K+1, . . . , xn,K+1

B. Convergence analysis

In this subsection, we will give the convergence analysis of
Algorithm 1. First, we give two different schemes of step-sizes
and the sampling number for Algorithm 1:
Scheme (S1): For any K = 0, 1, . . . ,

(I) step-sizes: αK= a1

(K+1)pα , βK= a2

(K+1)pβ
, γK= a3

(K+1)pγ ,
(II) the sampling number: mK = ⌊a4Kpm⌋+ 1,
where a1, a2, a3, a4 > 0, pα, pβ , pγ > 0, pm ≥ 0.
Scheme (S2): For any K = 0, 1, . . . ,

(I) step-sizes: αK = α, βK = β, γK = γ are constants,
(II) the sampling number: mK = ⌊pKm⌋+ 1,
where α, β, γ > 0, pm ≥ 0.

To get the almost sure and mean square convergence of
Algorithm 1, we need the following assumptions:

Assumption 4: Under Scheme (S1), step-sizes αK , βK , γK ,
the sampling number mK , and privacy noise parameters
σ
(ζ)
k =(k + 1)pζ , σ(η)

k =(k + 1)pη satisfy the following con-
ditions:
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1

2
< pβ < pα < pγ < 1, 2pγ − pα ≥ 1, 2pα − 2pζ − pβ ≥ 1,

2pα − pβ ≥ 1, 2pβ − 2pη ≥ 1, pm − pβ ≥ 1, a3 <
n

4(v⊤1 v2)L
,

a1<min{min
i∈V

{ 1∑
j∈N−

R,i
Rij

}, 1

rL1

}, a2<min{min
i∈V

{ 1∑
j∈N−

C,i
Cij

}, 1

rL2

}.

Assumption 5: Under Scheme (S2), step-sizes α, β, γ, the
sampling number mK , and privacy noise parameters σ(ζ)

k =

pKζ , σ(η)
k = pKη satisfy the following conditions:

0 < pζ , pη < 1, pm > 1, β<min{min
i∈V

{ 1∑
j∈N−

C,i
Cij

}, 1

rL2

},

α<min{min
i∈V

{ 1∑
j∈N−

R,i
Rij

}, 1

rL1

,

√
330n(v⊤1 v2)rL2

66n∥v1∥ρW2
ρL1

β},

γ<min{1, n

15(v⊤1 v2)L
,Q1α,Q2β},

where
Q1 =min{

√
nrL1

8ρW1
∥v2∥L

,

√
6nrL1

24ρW1
∥v2∥L

,

∥v1∥rL1

2ρW1
L

√
nµ

∥v1∥2∥v2∥2(16L2 + 3µ)
},

Q2 =min{
√
2rL2

6ρW2
L
,

rL1rL2

24ρW1
ρW2

ρL1
L
,

√
2n(v⊤1 v2)

3rL2

6ρW2
∥v1∥∥v2∥L

,

(v⊤1 v2)rL1
rL2

36∥v1∥∥v2∥ρW2
L

√
6

4ρ2W1
ρ2L1

+ r2L1

,
rL2

ρW2
L

√
v⊤1 v2
6n

,

(v⊤1 v2)rL2

66ρW2
L

√
660µ

∥v1∥2∥v2∥2(16L2 + 3µ)
}.

Theorem 1: If Assumptions 1, 2, 4 hold under Scheme (S1)
or Assumptions 1, 2, 5 hold under Scheme (S2), then
Algorithm 1 achieves the almost sure and mean square
convergence, i.e., limK→∞ ∥∇F (xi,K+1)∥2 = 0 a.s., and
limK→∞ E∥∇F (xi,K+1)∥2 = 0,∀i ∈ V.
Proof. See Appendix B. ■

Remark 9: Algorithm 1 achieves the almost sure and mean
square convergence for nonconvex objectives without the
Polyak-Łojasiewicz condition. The condition imposed on ob-
jectives is weaker than (strongly) convex objectives ([10]–[15],
[17], [29]–[32], [34]) or the Polyak-Łojasiewicz condition (
[16], [33]). Thus, Algorithm 1 has wider applicability than
[10]–[17], [29]–[34].
The polynomial mean square convergence rate and the oracle
complexity of Algorithm 1 with Scheme (S1) are given as
follows:

Theorem 2: Under Assumptions 1-3 and 4, Algorithm 1
with Scheme (S1) achieves the following polynomial mean
square convergence rate for any i ∈ V:

E∥∇F (xi,K+1)∥2=O
(

1

(K+1)θ−max{pα,pβ ,pγ}

)
, (9)

where θ=min{pm−pβ , 2pα−2pζ−pβ , 2pα−pβ , 2pβ−2pη ,2pβ ,
2pγ −pβ+pm}. Furthermore, for any 0 < φ < 1

3 , if
pα=1− 2φ

11 , pβ= 2
3 (1+

3φ
11 ), pγ=1− φ

11 , pm=φ, pζ=pη=
2φ
11 ,

then the oracle complexity of Algorithm 1 with Scheme (S1)
is O(φ− 3+3φ

1−3φ ).
Proof. See Appendix C. ■

Remark 10: In Theorem 2, the polynomial mean square
convergence rate is given for privacy noises with decreasing,

constant (see e.g. [35], [36], [38], [41]), and increasing vari-
ances (see e.g. [42]–[44]). This is non-trivial even without
considering the privacy protection. For example, let step-sizes
αK = 1

(K+1)0.96 , βK = 1
(K+1)0.7 , γK = 1

(K+1)0.98 . Then,

Theorem 2 holds as long as privacy noise parameters σ(ζ)
k ,

σ
(η)
k have the increasing rate no more than O(k0.6).
Remark 11: The key to achieving the polynomial mean

square convergence rate without the assumption of bounded
gradients is to use polynomially decreasing step-sizes and
the increasing sampling number, which reduces the effect of
stochastic gradient noises and privacy noises. This is different
from [6], [7], [35]–[39], [41], [42], where the assumption of
bounded gradients is required.

Remark 12: Theorem 2 shows that the oracle complexity of
Algorithm 1 with Scheme (S1) is O(φ− 3+3φ

1−3φ ). For example,
if the error φ = 0.02, then the oracle complexity is O(105).
This requirement for total number of data samples is accept-
able since the oracle complexity of centralized quasi-Newton
algorithm in [47] is also O(105) to achieve the same accuracy
as Algorithm 1 with Scheme (S1).

Next, the exponential mean square convergence rate and the
oracle complexity of Algorithm 1 with Scheme (S2) are given:

Theorem 3: Under Assumptions 1-3 and 5, Algorithm 1
with Scheme (S2) achieves the following exponential mean
square convergence rate for any i ∈ V:

E∥∇F (xi,K+1)∥2=O

(
max

{
ρAK

,
1

pm
, p2ζ , p

2
η

}K
)
.

Furthermore, for any 0 < φ < min{1, n
15(v⊤

1 v2)L
,mini∈V

{ 1∑
j∈N−

R,i
Rij

}, mini∈V{ 1∑
j∈N−

C,i
Cij

}, 1
rL1

, 1
rL2

}, if β=φ, α=

min{φ,
√
330n(v⊤1 v2)rL2

φ

132n∥v1∥ρW2
ρL1

}, γ = min{ 1
2 , n

30(v⊤1 v2)L
, Q1α

2 , Q2φ
2 },

pm=min { 1
φ ,

1
ρAK

}, pζ=pη=φ, then the oracle complexity of
Algorithm 1 with Scheme (S2) is O( 1

φ ln 1
φ ).

Proof. See Appendix D. ■
Remark 13: By Theorems 2, 3, Scheme (S2) achieves the

exponential mean square convergence rate, while Scheme (S1)
and methods in [6], [7], [15], [17], [35]–[44] achieve the poly-
nomial mean square convergence rate. For example, when the
index of convergence rate is 1

K+1

∑K
k=0 E(F (x̄k) − F (x∗)),

methods in [38], [39] achieve convergence rates of O( 1√
K
)

and O(1), respectively. Since the method in [38] is the same
as the one in [48], by [48, Th. 2],the method in [38] achieves
the convergence rate of O( 1√

K
). By [39, Th. 2], the method

in [39] achieves the convergence rate of O(1). Thus, Scheme
(S2) is suitable for the scenario where the convergence rate is
prioritized. However, by Theorem 1, Scheme (S1) achieves the
almost sure and mean square convergence under decreasing,
constant, and increasing privacy noises, while Scheme (S2)
achieves the almost sure and mean square convergence only
under decreasing privacy noises. This shows the trade-off of
Algorithm 1 between the convergence rate and the added
privacy noises.

Remark 14: When the global objective F (x) is strongly
convex (i.e., there exists s > 0 such that F (y) ≥ F (x) +
⟨∇F (x), y−x⟩+ s

2∥y−x∥
2, ∀x, y ∈ Rd), by [49, Lemma 6.9],

we have 2s(F (x) − F (x∗)) ≤ ∥∇F (x)∥2. Then Assumption
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3 is satisfied with µ = s, and thus, Theorems 2, 3 also hold
for strongly convex objectives. Hence, we provides a general
frame for Algorithm 1’s convergence rate analysis under both
nonconvex objectives with Polyak-Łojasiewicz conditions and
strongly convex objectives.

Remark 15: The oracle complexity of Scheme (S2) shows
that the sampling number required to achieve the desired accu-
racy is lower than existing works (see e.g. [14]). By Theorem
3, the oracle complexity of Scheme (S2) is O( 1

φ ln 1
φ ), which

is smaller than the oracle complexity O( 1
φ2 ) of the gradient-

tracking-based algorithm in [14]. For example, when the error
φ = 0.02, O(102) data samples are required in Scheme
(S2), while O(103) data samples are required in the gradient-
tracking-based algorithm in [14]. Moreover, the increasing
sampling number in both Schemes (S1) and (S2) is feasible
in machine learning scenarios, such as the speech recognition
problem ([50]), the simulated annealing problem ([51]), and
the noun-phrase chunking problem ([52]).

C. Privacy analysis
In the following, the definition of the sensitivity is provided

to compute the cumulative differential privacy budget ε of
Algorithm 1.

Definition 5 ([44]): For any k = 0, . . . ,K, let D, D′ be two
groups of adjacent sample sets, q be a mapping, and Dk =
{λi,k,l, i ∈ V, l = 1, . . . ,mK}, D′

k = {λ′i,k,l, i ∈ V, l =
1, . . . ,mK} be the data samples taken from D,D′ at the k-th
iteration, respectively. Define the sensitivity of q at the k-th
iteration of Algorithm 1 as follows:

∆q
k ≜ sup

Adj(D,D′)

∥q(Dk)− q(D′
k)∥1. (10)

Remark 16: Definition 5 captures the magnitude by which
a single agent’s data sample can change the mapping q in
the worst case. It is the key quantity showing how many
noises should be added such that Algorithm 1 achieves εk-
differential privacy at the k-th iteration. In Algorithm 1, the
mapping q(Dk) = [x⊤k , y

⊤
k ]

⊤, and the randomized algorithm
M(Dk)=[(xk+ζk)

⊤, (yk+ηk)
⊤]⊤.

The following lemma gives the sensitivity ∆q
k of Algo-

rithm 1 for any k = 0, . . . ,K.
Lemma 2: The sensitivity of Algorithm 1 at the k-th iter-

ation satisfies ∆q
k = ∥∆xk∥1 + ∥∆yk∥1, where ∥∆xk∥1 and

∥∆yk∥1 are given as follows:

∥∆xk∥1≤


0, if k=0;

γK
k−1∑
l=0

|1−αK
∑

j∈N−
R,i0

Ri0j |
k−l−1∥∆yl∥1, if k=1, . . . ,K,

∥∆yk∥1≤


C

mK
, if k=0;

k−1∑
l=0

|1−βK
∑

j∈N−
C,i0

Ci0j |
l 2C
mK

+|1−βK
∑

j∈N−
C,i0

Ci0j |
k C
mK

,
if k=1, . . . ,K.

Proof: See Appendix E. ■
Lemma 3: For any K = 0, 1, . . . , Algorithm 1 achieves

ε-differential privacy over K iterations, where ε =∑K
k=0(

∥∆xk∥1

σ
(ζ)
k

+ ∥∆yk∥1

σ
(η)
k

).

Proof. See Appendix F. ■
Theorem 4: For step-sizes αK , βK , γK , the sampling num-

ber mK satisfying Scheme (S1), and privacy noise parameters
σ
(ζ)
k =(k + 1)pζ , σ(η)

k =(k + 1)pη , if 0< a1
∑

j∈N−
R,i0

Ri0j <1,

0 < a2
∑

j∈N−
C,i0

Ci0j < 1, pm − pβ −max{0, 1− pη} > 0,
pm+min{0, pγ −pα−pβ}−max{0, 1−pζ} > 0 hold, then
the cumulative privacy budget ε is finite even over infinite
iterations.
Proof. First, we compute

∑K
k=0

∥∆yk∥1

σ
(η)
k

. Since 0 <

a2
∑

j∈N−
C,i0

Ci0j<1, it can be seen that 0<βK
∑

j∈N−
C,i0

Ci0j<

1. When k = 0, 1, ∥∆yk∥1 = O( 1
(K+1)pm ) by Lemma 2.

When 2 ≤ k ≤ K, we have

∥∆yk∥1=O

|1−βK∑j∈N−
C,i0

Ci0j |(1−|1−βK
∑

j∈N−
C,i0

Ci0j |k)

mK(1−|1−βK
∑

j∈N−
C,i0

Ci0j |)


=O

(
1

(K + 1)pm−pβ

)
. (11)

Then, for any k = 0, . . . ,K, ∥∆yk∥1 = O( 1

(K+1)pm−pβ
), and∑K

k=0
∥∆yk∥1

σ
(η)
k

can be rewritten as
K∑

k=0

∥∆yk∥1
σ
(η)
k

=
1

(K+1)pm−pβ
O

(
K∑

k=1

1

kpη

)

=O

(
ln(K+2)

(K+1)pm−pβ−max{0,1−pη}

)
.

Hence, if pm − pβ − max{0, 1 − pη} > 0 holds, then∑∞
k=0

∥∆yk∥1

σ
(η)
k

is finite.

Next, we compute
∑K

k=0
∥∆xk∥1

σ
(ζ)
k

. Since 0<a1
∑

j∈N−
R,i0

Ri0j

< 1, it can be seen that 0 < αK

∑
j∈N−

R,i0

Ri0j < 1. When

k = 0, 1, by Lemma 2, ∥∆xk∥1 = O( 1
(K+1)pm ). When k =

2, . . . ,K, by (11), we have

∥∆xk∥1 ≤
k−1∑
t=1

|1−αK

∑
j∈N−

R,i0

Ri0j |k−tγK∥∆yt−1∥1+γK∥∆yk−1∥1

=O

(
1

(K+1)pm+pγ−pα−pβ

)
.

Then, for any 0≤k≤K, ∥∆xk∥1=O( 1

(K+1)pm+min{0,pγ−pα−pβ} ),

and thus,
∑K

k=0
∥∆xk∥1

σ
(ζ)
k

can be rewritten as
K∑

k=0

∥∆xk∥1
σ
(ζ)
k

=
1

(K+1)pm+min{0,pγ−pα−pβ}
O

(
K∑

k=1

1

kpζ

)

=O

(
ln(K+2)

(K+1)pm+min{0,pγ−pα−pβ}−max{0,1−pζ}

)
.

If pm + min{0, pγ − pα − pβ} − max{0, 1 − pζ} > 0, then∑∞
k=0

∥∆xk∥1

σ
(ζ)
k

is finite. Hence, this theorem is proved. ■

Theorem 5: For step-sizes αK , βK , γK , the sampling num-
ber mK satisfying Scheme (S2), and privacy noise parameters
σ
(ζ)
k =pKζ , σ(η)

k =pKη , 0<pζ , pη<1, if 0<αK

∑
j∈N−

R,i0

Ri0j<1,

0<βK
∑

j∈N−
C,i0

Ci0j<1, 1
pm
<min{pζ , pη} hold, then the cu-

mulative privacy budget ε is finite even over infinite iterations.
Proof. By Lemma 2, it can be seen that
K∑

k=0

∥∆xk∥1
σ
(ζ)
k

+
∥∆yk∥1
σ
(η)
k

=O

(
K

(
1

pmpζ

)K

+K

(
1

pmpη

)K
)
.

Hence, if 1
pm

< min{pζ , pη}, then
∑∞

k=0
∥∆xk∥1

σ
(ζ)
k

+ ∥∆yk∥1

σ
(η)
k

is
finite. Therefore, this theorem is proved. ■

Remark 17: Theorems 4 and 5 establish the sufficient con-
dition for Algorithm 1 with Schemes (S1), (S2) to achieve
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the finite cumulative differential privacy budget ε even over
infinite iterations, respectively. This is different from [6], [7],
[10]–[17] that do not consider the privacy protection, and [35]–
[41] that achieve the infinite cumulative differential privacy
budget ε over infinite iterations. Thus, compared to [35]–[41],
Algorithm 1 with both Schemes (S1) and (S2) provides a higher
differential privacy level.

D. Trade-off between privacy and convergence

Based on Theorems 2-5, the trade-off between the privacy
and the convergence is given in the following corollary:

Corollary 1: (i) If Assumptions 1-3, 4, 0<αK

∑
j∈N−

R,i0

Ri0j

<1, 0<βK
∑

j∈N−
C,i0

Ci0j<1, pm−pβ−max{0, 1−pη}>0, and
pm+min{0, pγ −pα−pβ}−max{0, 1−pζ} > 0 hold, then
Algorithm 1 with Scheme (S1) achieves the polynomial mean
square convergence rate and the finite cumulative differential
privacy budget ε even over infinite iterations simultaneously.
(ii) If Assumptions 1-3, 5, 0<αK

∑
j∈N−

R,i0

Ri0j<1, 0<βK∑
j∈N−

C,i0

Ci0j<1, and 1
pm
<min{pζ , pη} hold, then Algorithm

1 with Scheme (S2) achieves the exponential mean square
convergence rate and the finite cumulative differential privacy
budget ε even over infinite iterations simultaneously.
Proof. By Theorems 2 and 4, Corollary 1(i) is proved. Then,
by Theorems 3 and 5, Corollary 1(ii) is proved. ■

Remark 18: Scheme (S1) achieves the polynomial mean
square convergence rate and the finite cumulative differential
privacy budget ε over infinite iterations simultaneously under
decreasing, constant and increasing privacy noises. For exam-
ple, let pα=0.987, pβ=0.69, pγ = 0.997, pm=2. Then, condi-
tions in Corollary 1(i) are satisfied as long as −0.3<pζ<0.15,
−0.3<pη<0.15. Scheme (S2) achieves the exponential mean
square convergence rate and the finite cumulative differential
privacy budget ε over infinite iterations simultaneously under
decreasing privacy noises. For example, let α=0.1, β=0.1,
γ=0.01, pm=1.1. Then, conditions in Corollary 1(ii) are
satisfied as long as 0.91<pζ<0.95, 0.91<pη<0.95.

Remark 19: Corollary 1 shows the trade-off between pri-
vacy and the convergence rate in Algorithm 1. The smaller
privacy noise parameters σ(ζ)

k , σ(η)
k are, the faster Algorithm 1

converges, while the larger the cumulative differential privacy
budget ε is. Moreover, Scheme (S1) achieves the polynomial
mean square convergence rate and finite cumulative differential
privacy budget ε over infinite iterations under decreasing,
constant, and increasing privacy noises, while Scheme (S2)
achieves the exponential mean square convergence rate and
finite cumulative differential privacy budget ε only for de-
creasing privacy noises. Then, the differential privacy level
of Scheme (S1) is higher than the one of Scheme (S2), while
the convergence rate of Scheme (S2) is faster than the one of
Scheme (S1).

Remark 20: The parameter a4 in the sampling number
mK = ⌊a4Kpm⌋ + 1 affects both convergence rate and the
cumulative privacy budget. Since by (98), E∥∇F (xi,K+1)∥2=
O( a4+1

a4(K+1)θ−max{pα,pβ,pγ} ) is decreasing with respect to a4.
Then, the larger the parameter a4 is, the faster the convergence
rate is. By Lemma 2, the larger the parameter a4 is, the smaller

the sensitivity ∆q
k is, and then by Theorem 4, the smaller the

cumulative privacy budget ε is.
Based on Corollary 1, we have the following corollary as

the sampling number goes to infinity:
Corollary 2: Under the conditions of Corollary 1, Algo-

rithm 1 with both Schemes (S1), (S2) achieves the almost sure
and mean square convergence and the finite cumulative differ-
ential privacy budget ε over infinite iterations simultaneously
as the sampling number goes to infinity.

Remark 21: The result of Corollary 2 does not contradict
the trade-off between privacy and utility. In fact, to achieve
differential privacy, Algorithm 1 incurs a compromise on the
utility. However, different from [36], [40], [41] that compro-
mise convergence accuracy to enable differential privacy, Al-
gorithm 1 compromises the convergence rate and the sampling
number (which are also utility metrics) instead. By Corollary
1, the larger privacy noise parameters σ(ζ)

k , σ(η)
k are, the slower

the convergence rate is. By Corollary 2, the sampling number
mK is required to go to infinity when the convergence of
Algorithm 1 and the finite cumulative privacy budget ε over
infinite iterations are considered simultaneously. The ability to
retain convergence accuracy makes our approach suitable for
accuracy-critical scenarios.

IV. NUMERICAL EXAMPLES

In this section, we train the machine learning model
ResNet18 ([53]) in a distributed manner with the benchmark
datasets “MNIST” ([54]) and “CIFAR-10” ([55], [56]), respec-
tively. Specifically, five agents cooperatively train ResNet18
over the directed graphs shown in Figs. 1(a) and 1(b), which
satisfy Assumption 1. Then, each benchmark dataset is di-
vided into two subsets for training and testing, respectively.
The training dataset of each benchmark dataset is uniformly
divided into 5 subsets, each of which can only be accessed by
one agent to update its model parameters. The following three
numerical experiments are given:
(a) the effect of privacy noises on Algorithm 1’s convergence

rate and differential privacy level;
(b) the comparison of Algorithm 1 with Schemes (S1),

(S2) between the convergence rate and the differential
privacy level;

(c) the comparison between Algorithm 1 with Schemes (S1),
(S2) and methods in [36], [39], [40], [42]–[44] for the
convergence rate and the differential privacy level.

(a) The directed graph
GR1

(b) The directed graph
GC1

Fig. 1: Topology structures of directed graphs GR,GC induced by
weight matrices R,C
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A. Effect of privacy noises

First, let step-sizes αK= 72
20000.987=0.04, βK= 0.95

20000.69=
0.005, γK= 98

20000.997=0.05, the sampling number mK=
⌊0.00007 · 20001.78⌋+1=53, and privacy noise parameters
σ
(ζ)
k = (k+1)pζ , σ(η)

k = (k+1)pη with pζ , pη = −0.1, 0.1, 0.2
respectively in Scheme (S1). Then, the training and testing
accuracy on the benchmark datasets “MNIST” and “CIFAR-
10” are given in Fig. 2(a)-2(d), from which one can see
that the smaller privacy noise parameters σ

(ζ)
k , σ(η)

k are,
the faster Algorithm 1 converges. This is consistent with
the convergence rate analysis in Theorem 2. Meanwhile, the
cumulative differential privacy budget ε of Algorithm 1 is
given in Fig. 2(e), from which one can see that that the
smaller privacy noise parameters σ(ζ)

k , σ(η)
k are, the smaller the

cumulative differential privacy budget ε is. This is consistent
with the privacy analysis in Theorem 4, and thus consistent
with the trade-off between the privacy and the convergence
rate in Corollary 1.

Next, let step-sizes αK = 0.1, βK = 0.01, γK = 0.1,
the sampling number mK = ⌊1.0022000⌋ + 1 = 55, and
privacy noise parameters σ(ζ)

k = pζ
2000, σ(η)

k = pη
2000 with

pζ , pη = 0.9994, 0.9996, 0.9998 respectively in Scheme (S2).
Then, the training and testing accuracy on the benchmark
datasets “MNIST” and “CIFAR-10” are given in Fig. 3(a)-
3(d), from which one can see that the smaller privacy noise
parameters σ(ζ)

k , σ(η)
k are, the faster Algorithm 1 converges.

This is consistent with the convergence rate analysis in Theo-
rem 3. Meanwhile, the cumulative differential privacy budget
ε of Algorithm 1 is given in Fig. 3(e), from which one can
see that that the smaller privacy noise parameters σ(ζ)

k , σ(η)
k

are, the smaller the cumulative differential privacy budget ε is.
This is consistent with the privacy analysis in Theorem 5, and
thus, consistent with the trade-off between the privacy and the
convergence rate in Corollary 1.

Remark 22: Due to the increasing sample size mK , the
cumulative differential privacy budget ε decreases in the later
stages of the iterations in the numerical experiment. In Scheme
(S1), the sampling number mK = ⌊0.00007 · K1.78⌋ + 1 =
O(K1.78). By Theorem 4, the cumulative differential privacy
budget ε = O( ln(K+2)

(K+1)0.22 ). Denote the function ψ1(t) =
ln(t+2)
(t+1)0.22 . Then, it can be seen that the function ψ1(t) decreases
when t satisfies t+ 1 ≤ 0.22(t+ 2) ln(t+ 2), i.e., t ≥ 87.54.
Thus, the cumulative differential privacy budget ε decreases
when the maximum iteration number K ≥ 88. This result
is consistent with Fig. 2(e). Similarly, in Scheme (S2), the
sampling number mK = ⌊1.002K⌋ + 1 = O(1.002K). By
Theorem 5, the cumulative differential privacy budget ε =
O( K

1.0016K
). Denote the function ψ2(t) =

t
1.0016t . Then, it can

be seen that the function ψ2(t) decreases when t ≥ 625.49.
Thus, the cumulative differential privacy budget ε decreases
when the maximum iteration number K ≥ 626. This result is
consistent with Fig. 3(e).

B. Comparison between Schemes (S1) and (S2)
In this subsection, the comparison of Algorithm 1 with

Schemes (S1), (S2) between the convergence rate and the
differential privacy level is given. Let pζ , pη = 0.1 in Scheme

(S1), and pζ , pη = 0.9996 in Scheme (S2). Then, from Fig.
4(a)-4(d) one can see that Algorithm 1 with Scheme (S2) con-
verges faster than Algorithm 1 with Scheme (S1), while from
Fig. 4(e) one can see that the cumulative differential privacy
budget ε of Algorithm 1 with Scheme (S1) is smaller than the
cumulative differential privacy budget ε of Algorithm 1 with
Scheme (S1).
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the “MNIST” dataset
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(b) Testing accuracy on
the “MNIST” dataset
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(c) Training accuracy on
the “CIFAR-10” dataset
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(d) Testing accuracy on
the “CIFAR-10” dataset
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Fig. 2: Accuracy and cumulative differential privacy budget ε of
Algorithm 1 with Scheme (S1) and pζ , pη = −0.1, 0.1, 0.2
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(a) Training accuracy on
the “MNIST” dataset
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Fig. 3: Accuracy and cumulative differential privacy budget ε of
Algorithm 1 with Scheme (S2) and pζ , pη = 0.9994, 0.9996, 0.9998
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Fig. 4: Comparison of Algorithm 1 with Schemes (S1), (S2) on
accuracy and cumulative differential privacy budget ε
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C. Comparison with methods in [36], [39], [40], [42]–[44]
Let pζ , pη = 0.9996 in Scheme (S2), and iterations step-

sizes αK , βK , γK , the sampling number mK , and privacy
noise parameters σ

(ζ)
k , σ

(η)
k in Scheme (S1) and [36], [39],

[40], [42]–[44] be the same as Scheme (S2) to ensure a fair
comparison. Then, the comparison of the convergence rate
and the differential privacy level between Algorithm 1 and
the methods in [36], [39], [40], [42]–[44] is given in Fig. 5.
From Fig. 5, one can see that Algorithm 1 with Scheme (S2)
converges faster than methods in [36], [39], [40], [42]–[44].

A comparison of the differential privacy level between
Algorithm 1 and the methods in [36], [39], [40], [42]–[44] is
given in Fig. 6. By Fig. 6(a), the cumulative differential privacy
budget ε of Algorithm 1 with both Schemes (S1) and (S2) is
smaller than the ones in [36], [40], [42]–[44]. By Fig. 6(b),
[39] achieves the cumulative differential privacy budget δ = 1
after 800 iterations, and thus, the one therein cannot protect
sampled gradients after 800 iterations. Thus, Algorithm 1 with
both Schemes (S1) and (S2) provides a higher differential
privacy level than methods in [36], [39], [40], [42]–[44].
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Fig. 5: Comparison of accuracy on the benchmark datasets
“MNIST” and “CIFAR-10”
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V. CONCLUSION

In this paper, we have proposed a new differentially private
gradient-tracking-based distributed stochastic optimization al-
gorithm over directed graphs. Two novel schemes of step-sizes

and the sampling number are given: Scheme (S1) uses poly-
nomially decreasing step-sizes and the increasing sampling
number with the maximum iteration number. Scheme (S2)
uses constant step-sizes and the exponentially increasing sam-
pling number with the maximum iteration number. By using
the sampling parameter-controlled subsampling method, both
schemes achieve the finite cumulative privacy budget even over
infinite iterations, and thus, enhance the differential privacy
level compared to the existing ones. By using the gradient-
tracking method, the almost sure and mean square convergence
of the algorithm is shown for nonconvex objectives over
directed graphs with spanning trees. Further, when nonconvex
objectives satisfy the Polyak-Łojasiewicz condition, the poly-
nomial mean square convergence rate (Scheme (S1)) and the
exponential mean square convergence rate (Scheme (S2)) are
given, respectively. Furthermore, the oracle complexity of the
algorithm, the trade-off between the privacy and the conver-
gence are shown. Finally, numerical examples of distributed
training on the benchmark datasets “MNIST” and “CIFAR-10”
are given to show the effectiveness of the algorithm.

APPENDIX A
USEFUL LEMMAS

For the convenience of the analysis, define

∇f(xk) = [∇f1(x1,k)⊤, . . . ,∇fn(xn,k)⊤]⊤,

W1 = In − 1

n
1nv

⊤
1 ,W2 = In − 1

n
v21

⊤
n , x̄k =

1

n
(v⊤1 ⊗Id)xk,

ȳk=
1

n
(1⊤

n ⊗Id)yk, u(1)k = 2dρ2L1
α2
K(σ

(ζ)
k )

2
+

σ2
g

mK
,

u
(2)
k =

(n(2 + 3rL2
βK) + 6(1 + rL2

βK)ρ2W2
∥v2∥2γ2KL2)σ2

g

rL2
mKβK

+ 2dρ2L2
β2
K(σ

(η)
k )2 +

4d(1+rL2
βK)ρ2L1

ρ2W2
α2
K(σ

(ζ)
k )2

rL2βK
,

u
(3)
k =

(v⊤1 v2)(n+ (v⊤1 v2)
2γKL)γKσ

2
g

2n2mK
, uk = [u

(1)
k , u

(2)
k , u

(3)
k ]⊤,

s̃ = [s̃1, s̃2, s̃3]
⊤ = [

n

L2
,

2n2(v⊤1 v2)
2

(2n+ 3(v⊤1 v2)γL)∥v1∥2
,
2

µ
]⊤,

s̃ = [s̃1, s̃2]
⊤,uk = [u

(1)
k , u

(2)
k ]⊤,

A
(11)
K =1−rL1αK+

4(1+rL1
αK)γ

2
Kρ

2
W1

∥v2∥2L2

nrL1αK
,

A
(12)
K =

2(1+rL1αK)γ
2
Kρ

2
W1

rL1
αK

, A
(13)
K =

8(1 + rL1αK)γ2Kρ
2
W1

∥v2∥2L
rL1

αK
,

A
(21)
K =

(1 + rL2
βK)(6α2

Kρ
2
L1

+
12∥v2∥2γ2

KL2

n )ρ2W2
L2

rL2
βK

,

A
(22)
K = 1−rL2βK+

6(1+rL2
βK)ρ2W2

γ2KL
2

rL2
βK

,

A
(23)
K =

24(1+rL2βK)ρ2W2
∥v2∥2γ2KL3

rL2
βK

,

A
(31)
K =

(v⊤1v2)γKL
2(n+3(v⊤1v2)γKL)

2n3
,

A
(32)
K =

(2n+3(v⊤1 v2)γKL)∥v1∥2γK
2n2(v⊤1 v2)

,
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A
(33)
K = 1− (v⊤1 v2)µγK

n
+

3(v⊤1v2)
2γ2KL

2n2
,

Vk=[E∥(W1⊗Id)xk∥2,E∥(W2⊗Id)yk∥2,E(F (xk)−F (x∗))]⊤,

c=[c1, c2]⊤=[A
(31)
K , A

(32)
K ]⊤,b=[b1,b2]

⊤=[
A

(13)
K

2L
,
A

(23)
K

2L
]⊤,

Vk = [E∥(W1⊗Id)xk∥2,E∥(W2⊗Id)yk∥2]⊤,

AK =

A
(11)
K A

(12)
K A

(13)
K

A
(21)
K A

(22)
K A

(23)
K

A
(31)
K A

(32)
K A

(33)
K

 ,MK =

[
A

(11)
K A

(12)
K

A
(21)
K A

(22)
K

]
,

DK =


A

(11)
K A

(12)
K A

(13)
K 0

A
(21)
K A

(22)
K A

(23)
K 0

A
(31)
K A

(32)
K 1 −(v⊤1v2)γK

2n +
3(v⊤1v2)2γ2

KL

2n2

0 0 0 0

 .
Then, we give the following useful lemmas.

Lemma A.1: ([44, Lemma A.1]) If Assumption 2(i) holds
for a function h : Rd → R with a global minimum h(x∗),
then following statements holds:
(i) h(y) ≤ h(x)+⟨∇h(x), y−x⟩+ L

2 ∥y−x∥
2, ∀x, y ∈ Rd.

(ii) ∥∇h(x)∥2 ≤ 2L (h(x)− h(x∗)), ∀x ∈ Rd.
Lemma A.2: ([57, Cor. 8.1.29, Th. 8.4.4]) For any n =

1, 2, . . . , let A ∈ Rn×n be a nonnegative matrix and x ∈ Rn

be a positive vector. Then, following statements hold:
(i) If there exists ρ > 0 such that Ax ≤ ρx, then ρA ≤ ρ.
(ii) If A is irreducible, then ρA > 0 and there exists a positive
vector y = [y1, . . . , yn]

⊤ ∈ Rn such that y⊤A = ρAy
⊤.

Lemma A.3: If Assumptions 1 and 2 hold, then the follow-
ing inequality holds for any k = 0, . . . ,K, K = 0, 1, . . . :

E∥(W1 ⊗ Id)(xk+1 − xk)∥2

≤
3nρ2L1

α2
K+6ρ2W1

∥v2∥2γ2KL2

n
E∥(W1 ⊗ Id)xk∥2

+ 3ρ2W1
γ2K(E∥(W2⊗Id)yk∥2+4∥v2∥2L2E(F (x̄k)−F (x∗)))

+ 2dρ2L1
α2
K(σ

(ζ)
k )2 +

3ρ2W1
∥v2∥2γ2Kσ2

g

mK
. (12)

Proof. By Assumption 1, Lemma 1 holds. Note that by Lemma
1(i), L1W1 =W1L1 = L1. Then, multiplying W1⊗Id on both
sides of (7) implies

(W1 ⊗ Id)xk+1

=((In − αKL1)⊗ Id)(W1 ⊗ Id)xk − αK(L1 ⊗ Id)ζk
− γK(W1 ⊗ Id)yk,

=((In − αKL1)⊗ Id)(W1 ⊗ Id)xk − αK(L1 ⊗ Id)ζk
− γK(W1W2 ⊗ Id)yk − γK

n
(W1v21

⊤
n ⊗ Id)yk. (13)

Rearranging (13) gives

(W1 ⊗ Id)(xk+1 − xk)

=− αK(L1W1 ⊗ Id)xk − αK(L1 ⊗ Id)ζk

− γK(W1W2 ⊗ Id)yk − γK
n

(W1v21
⊤
n ⊗ Id)yk. (14)

Ttaking the mathematical expectation on the squared Eu-
clidean norm of (14) implies

E∥(W1 ⊗ Id)(xk+1 − xk)∥2

=E∥ − αK(L1W1 ⊗ Id)xk − αK(L1 ⊗ Id)ζk
− γK(W1W2 ⊗ Id)yk − γK(W1v2 ⊗ Id)ȳk∥2. (15)

For any k = 0, . . . ,K, let Fk = σ({xk, yk}). Then, since ζk
is independent of Fk and follows the Laplacian distribution
Lap(σ(ζ)

k ), we have

E(ζk|Fk) = Eζk = 0,

E(∥ζk∥2|Fk) = E∥ζk∥2 = 2d(σ
(ζ)
k )2. (16)

Then by (16), (15) can be rewritten as

E∥(W1 ⊗ Id)(xk+1 − xk)∥2

≤E∥αK(L1W1 ⊗ Id)xk + γK(W1W2 ⊗ Id)yk

+ γK(W1v2 ⊗ Id)ȳk∥2 + 2dρ2L1
α2
K(σ

(ζ)
k )2. (17)

Since for any a1, a2, . . . , am ∈ Rd, the following
inequality holds:

∥
m∑
i=1

ai∥2 ≤ m

m∑
i=1

∥ai∥2. (18)

Setting m = 3 in (18) and substituting (18) into (17) implies

E∥(W1 ⊗ Id)(xk+1 − xk)∥2

≤3E∥αK(L1W1 ⊗ Id)xk∥2 + 3E∥γK(W1W2 ⊗ Id)yk∥2

+ 3E∥γK(W1v2 ⊗ Id)ȳk∥2 + 2dρ2L1
α2
K(σ

(ζ)
k )2

≤3α2
Kρ

2
L1
E∥(W1 ⊗ Id)xk∥2 + 3γ2Kρ

2
W1

E∥(W2 ⊗ Id)yk∥2

+ 3γ2Kρ
2
W1

∥v2∥2E∥ȳk∥2 + 2dρ2L1
α2
K(σ

(ζ)
k )2. (19)

By Assumption 2(ii), we have

E(gk−∇f(xk)) = E((gk−∇f(xk))|Fk) = 0,

E∥gk−∇f(xk)∥2 = E(∥gk−∇f(xk)∥2|Fk) ≤
nσ2

g

mK
. (20)

Moreover, note that 1⊤
nL2 = 0. Then, for any k = 0, . . . ,K,

multiplying 1⊤
n ⊗ Id on both sides of (8) and using y0 = g0

result in

ȳk =ȳk−1 +
1

n
(1⊤

n ⊗ Id)(gk − gk−1)

=
1

n
(1⊤

n ⊗ Id)g0 +

k−1∑
l=0

1

n
(1⊤

n ⊗ Id)(gl+1 − gl)

=
1

n
(1⊤

n ⊗ Id)gk. (21)

Thus, by (20), taking the mathematical expectation on the
squared Euclidean norm of (21) implies

E∥ȳk∥2 =E∥ 1
n
(1⊤

n ⊗ Id)(gk −∇f(xk) +∇f(xk))∥2

≤
σ2
g

mK
+ E∥ 1

n
(1⊤

n ⊗ Id)∇f(xk)∥2. (22)

Since ∇f(xk) = (∇f(xk)−∇f((1n ⊗ Id)x̄k)) +∇f((1n ⊗
Id)x̄k), substituting (18) into ∥ 1

n (1
⊤
n ⊗ Id)∇f(xk)∥2 implies

∥ 1
n
(1⊤

n ⊗ Id)∇f(xk)∥2

≤2∥ 1
n

n∑
i=1

(∇fi(xi,k)−∇fi(x̄k))∥2 + 2∥∇F (x̄k)∥2

≤ 2

n

n∑
i=1

∥∇fi(xi,k)−∇fi(x̄k)∥2 + 2∥∇F (x̄k)∥2. (23)

By Assumption 2(i), it can be seen that
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n∑
i=1

∥∇fi(xi,k)−∇fi(x̄k)∥2

≤L2
n∑

i=1

∥xi,k − x̄k∥2 = L2∥(W1 ⊗ Id)xk∥2. (24)

Substituting (23) and (24) into (22) results in

E∥ȳk∥2 ≤ 2L2

n
∥(W1⊗Id)xk∥2 + 2E∥∇F (x̄k)∥2+

σ2
g

mK
. (25)

Note that by Lemma A.1(ii), ∥∇F (x̄k)∥2 ≤ 2L(F (x̄k) −
F (x∗)). Then, (25) can be rewritten as

E∥ȳk∥2≤
2L2

n
E∥(W1⊗Id)xk∥2+4LE(F (x̄k)−F (x∗))+

σ2
g

mK
. (26)

Then, substituting (26) into (19) gives (12). Hence, this lemma
is proved. ■

Lemma A.4: If Assumptions 1 and 2 hold, then the follow-
ing inequality holds for any k = 0, . . . ,K, K = 0, 1, . . . :

E∥ 1
n
(v⊤1 ⊗Id)yk∥2

≤3∥v1∥2

n2
E∥(W2⊗Id)yk∥2+

(v⊤1v2)
2

n2
E∥∇F (x̄k)∥2

+
3(v⊤1 v2)

2L2

n3
E ∥(W1 ⊗ Id)xk∥2 +

(v⊤1 v2)
2σ2

g

n2mK
. (27)

Proof. By Assumptions 1, 2, (21) in Lemma A.3 holds. Then
by (21), 1

n (v
⊤
1 ⊗Id)yk can be rewritten as

1

n
(v⊤1 ⊗ Id)yk

=
1

n
(v⊤1 ⊗ Id)(yk − (v2 ⊗ Id)ȳk) +

v⊤1 v2
n

ȳk

=
1

n
(v⊤1 ⊗ Id)(yk − (v2 ⊗ Id)ȳk) +

v⊤1 v2
n

(
1

n
(1⊤

n ⊗ Id)gk)

=
1

n
(v⊤1 ⊗ Id)(W2 ⊗ Id)yk +

v⊤1 v2
n2

n∑
i=1

(gi,k −∇fi(xi,k))

+
v⊤1 v2
n2

n∑
i=1

(∇fi(xi,k)−∇fi(x̄k)) +
v⊤1 v2
n

∇F (x̄k). (28)

Thus, by (20) and (28), we have

E∥ 1
n
(v⊤1 ⊗Id)yk∥2

≤E∥ 1
n
(v⊤1 ⊗ Id)(W2 ⊗ Id)yk +

v⊤1 v2
n

∇F (x̄k)

+
v⊤1 v2
n2

n∑
i=1

(∇fi(xi,k)−∇fi(x̄k))∥2 +
(v⊤1 v2)

2σ2
g

n2mK
.(29)

Setting m = 3 in (18) and substituting (18) into (29) imply
(27). Thus, this lemma is proved. ■

Lemma A.5: If Assumptions 1, 2, and αK<min{mini∈V{
1∑

j∈N−
R,i

Rij
}, 1

rL1
}, βK < min{mini∈V{ 1∑

j∈N−
C,i
Cij

}, 1
rL2

} hold,

then the following inequality holds for any k = 0, . . . ,K:

E∥(W1 ⊗ Id)xk+1∥2

≤A(11)
K E∥(W1⊗Id)xk∥2 +A

(12)
K E∥(W2 ⊗ Id)yk∥2

+
A

(13)
K

2L
E∥∇F (x̄k)∥2 + u

(1)
k . (30)

Proof. By Assumption 1, (13) in Lemma A.3 holds. Then,
taking the mathematical expectation on the squared Euclidean
norm of (13) implies

E∥(W1 ⊗ Id)xk+1∥2

=E∥ ((In − αKL1)⊗ Id) (W1 ⊗ Id)xk − αK(L1 ⊗ Id)ζk

− γK(W1W2 ⊗ Id)yk − γK(W1v2 ⊗ Id)ȳk∥2. (31)

Then, substituting (16) into (31) implies

E∥(W1 ⊗ Id)xk+1∥2

≤E (∥ ((In − αKL1)⊗ Id) (W1 ⊗ Id)xk − γK(W1W2 ⊗ Id)yk

−γK(W1v2 ⊗ Id)ȳk∥2
)
+ 2dρ2L1

α2
K

(
σ
(ζ)
k

)2
. (32)

Note that for any a,b ∈ Rd, r > 0, the following Cauchy-
Schwarz inequality ([58, Ex. 4(b)]) holds:

∥a+ b∥2 ≤ (1 + r)∥a∥2 +
(
1 +

1

r

)
∥b∥2. (33)

Then, setting r = rL1αK in (33) and substituting (33) into
(32) imply
E∥(W1 ⊗ Id)xk+1∥2

≤(1+rL1
αK)E∥ ((In − αKL1)⊗ Id) (W1 ⊗ Id)xk∥2

+

(
1+

1

rL1
αK

)
E∥γK(W1W2⊗Id)yk+γK(W1v2⊗Id)ȳk∥2

+ 2dρ2L1
α2
K

(
σ
(ζ)
k

)2
. (34)

By Assumption 1, Lemma 1 holds. By Lemma 1(i), since
v⊤1 1n = n, we have W 2

1 = W1. Thus, it can be seen that
((In−αKL1)⊗Id)(W1⊗Id)xk=((In−αKL1−1

n1nv
⊤
1 )⊗Id)(W1⊗

Id)xk. Since αK<min{mini∈V{ 1∑
j∈N−

R,i
Rij

}, 1
rL1

}, by Lemma

1(ii), the spectral radius of In−αKL1− 1
n1nv

⊤
1 is 1−αKrL1

.
Then, we have

(1 + rL1αK)∥((In − αKL1)⊗ Id)(W1 ⊗ Id)xk∥2

≤(1 + rL1
αK)(1− rL1

αK)2∥(W1 ⊗ Id)xk∥2

≤(1− rL1
αK)∥(W1 ⊗ Id)xk∥2. (35)

Substituting (35) into (34) implies
E∥(W1 ⊗ Id)xk+1∥2

≤(1− rL1
αK)E∥(W1 ⊗ Id)xk∥2 + 2dρ2L1

α2
K

(
σ
(ζ)
k

)2
+
(1+rL1

αK)γ2K
rL1αK

E(∥(W1W2⊗Id)yk+(W1v2⊗Id)ȳk∥2). (36)

Setting m = 2 in (18) and substituting (18) into (36) imply
E∥(W1 ⊗ Id)xk+1∥2

≤(1− rL1αK)E∥(W1 ⊗ Id)xk∥2 + 2dρ2L1
α2
K

(
σ
(ζ)
k

)2
+

2(1 + rL1αK)γ2K
rL1

αK
E∥(W1W2 ⊗ Id)yk∥2

+
2(1 + rL1αK)γ2K

rL1
αK

E∥(W1v2 ⊗ Id)ȳk∥2

≤(1− rL1
αK)E∥(W1 ⊗ Id)xk∥2 + 2dρ2L1

α2
K

(
σ
(ζ)
k

)2
+

2(1 + rL1
αK)γ2Kρ

2
W1

rL1αK
E∥(W2 ⊗ Id)yk∥2

+
2(1 + rL1αK)γ2Kρ

2
W1

∥v2∥2

rL1
αK

E∥ȳk∥2. (37)
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By Assumptions 1 and 2, (25) in Lemma A.3 holds. Then,
substituting (25) into (37) implies (30). Thus, this lemma is
proved. ■

Lemma A.6: If Assumptions 1, 2, and αK<min{mini∈V{
1∑

j∈N−
R,i

Rij
}, 1

rL1
},βK < min{mini∈V{ 1∑

j∈N−
C,i
Cij

}, 1
rL2

} hold,

then the following inequality holds for any k = 0, . . . ,K:

E∥(W2 ⊗ Id)yk+1∥2

≤A(21)
K E∥(W1⊗Id)xk∥2 +A

(22)
K E∥(W2 ⊗ Id)yk∥2

+
A

(23)
K

2L
E∥∇F (x̄k)∥2 + u

(2)
k . (38)

Proof. By Assumption 1, Lemma 1 holds. Note that by Lemma
1(i), L2W2 =W2L2 = L2. Then, multiplying W2⊗Id on both
sides of (8) leads to

(W2⊗Id)yk+1=((In−βKL2)⊗Id)(W2⊗Id)yk
−βK(L2⊗Id)ηk+(W2⊗Id)(gk+1−gk).(39)

Thus, taking the mathematical expectation on the squared
Euclidean norm of (39) implies

E∥(W2 ⊗ Id)yk+1∥2

=E∥((In − βKL2)⊗ Id)(W2 ⊗ Id)yk − βK(L2 ⊗ Id)ηk

+ (W2 ⊗ Id) (gk+1 − gk) ∥2. (40)

For any k = 0, . . . ,K, let Hk = σ({xk+1, yk}). Then, since
ηk is independent of Hk and follows the Laplacian distribution
Lap(σ(η)

k ), we have

E(ηk|Hk) = Eηk = 0,

E(∥ηk∥2|Hk) = E∥ηk∥2 = 2d(σ
(η)
k )2. (41)

Moreover, since gk+1 −∇f(xk+1) is independent of Hk, by
Assumption 2(ii) we have

E(gk+1−∇f(xk+1))=E((gk+1−∇f(xk+1)|Fk)=0,

E∥gk+1−∇f(xk+1)∥2=E(∥gk+1−∇f(xk+1)∥2|Fk)≤
nσ2

g

mK
. (42)

Then, substituting (41) and (42) into (40) implies

E∥(W2 ⊗ Id)yk+1∥2

≤E∥((In − βKL2)⊗ Id)(W2 ⊗ Id)yk

+ (W2 ⊗ Id)(∇f(xk+1)−∇f(xk) +∇f(xk)− gk)∥2

+ 2dρ2L2
β2
K(σ

(η)
k )2 +

nσ2
g

mK
. (43)

Then, setting r = rL2
βK in (33) and substituting (33) into

(43) results in

E∥(W2 ⊗ Id)yk+1∥2

≤(1 + rL2
βK)E∥((In − βKL2)⊗ Id)(W2 ⊗ Id)yk∥2

+

(
1 +

1

rL2
βK

)
E∥(W2 ⊗ Id)(∇f(xk+1)−∇f(xk)

+∇f(xk)− gk)∥2 + 2dρ2L2
β2
K

(
σ
(η)
k

)2
+
nσ2

g

mK
. (44)

Setting m = 2 in (18) and substituting (18), (20) into (44)
implies

E∥(W2 ⊗ Id)yk+1∥2

≤(1 + rL2βK)E∥((In − βKL2)⊗ Id)(W2 ⊗ Id)yk∥2

+
2(1 + rL2

βK)

rL2βK
E∥(W2 ⊗ Id)(∇f(xk+1)−∇f(xk))∥2

+
n(2 + 3rL2βK)σ2

g

rL2
βKmK

+ 2dρ2L2
β2
K

(
σ
(η)
k

)2
≤(1 + rL2

βK)E∥((In − βKL2)⊗ Id)(W2 ⊗ Id)yk∥2

+
2(1 + rL2

βK)ρ2W2

rL2βK
E∥∇f(xk+1)−∇f(xk)∥2

+
n(2 + 3rL2βK)σ2

g

rL2
βKmK

+ 2dρ2L2
β2
K

(
σ
(η)
k

)2
(45)

By Assumption 2(i), it can be seen that

∥∇f(xk+1)−∇f(xk)∥2 =

n∑
i=1

∥∇fi(xi,k+1)−∇fi(xi,k)∥2

≤L2
n∑

i=1

∥xi,k+1 − xi,k∥2 = L2∥xk+1 − xk∥2.

Thus, we have

E ∥∇f(xk+1)−∇f(xk)∥2 ≤ L2E ∥xk+1−xk∥2 . (46)

By Assumption 1, Lemma 1 holds. Then, rearranging (7) gives
xk+1 − xk

=− αK(L1 ⊗ Id)(W1 ⊗ Id)xk − αK(L1 ⊗ Id)ζk

− γK (W2 ⊗ Id) yk − γK(v2 ⊗ Id)ȳk. (47)

Then, taking the mathematical expectation on the squared
Euclidean norm of (47), setting m=3 in (18) and substituting
(18) into E∥xk+1 − xk∥2 imply

E∥xk+1 − xk∥2

≤3E∥αK(L1 ⊗ Id)(W1 ⊗ Id)xk∥2 + 3E∥γK (W2 ⊗ Id) yk∥2

+ 3E∥γK(v2 ⊗ Id)ȳk∥2 + 2dρ2L1
α2
K

(
σ
(ζ)
k

)2
≤3α2

Kρ
2
L1
E∥(W1 ⊗ Id)xk∥2 + 3γ2KE∥ (W2 ⊗ Id) yk∥2

+ 3∥v2∥2γ2KE∥ȳk∥2 + 2dρ2L1
α2
K

(
σ
(ζ)
k

)2
. (48)

Substituting (25) and (48) into (46) leads to

E∥∇f(xk+1)−∇f(xk)∥2

≤
(
3α2

Kρ
2
L1

+
6∥v2∥2γ2KL2

n

)
L2E∥(W1 ⊗ Id)xk∥2

+3γ2KL
2E∥(W2⊗Id)yk∥2+6∥v2∥2γ2KL2E∥∇F (x̄k)∥2

+
3∥v2∥2γ2Kσ2

gL
2

mK
+ 2dρ2L1

L2α2
K

(
σ
(ζ)
k

)2
. (49)

By Lemma 1(i), since v⊤2 1n = n, we have W 2
2 = W2.

Thus, it can be seen that ((In−βKL2)⊗Id)(W2⊗Id)yk =
((In − βKL2 − 1

nv21
⊤
n ) ⊗ Id)(W2 ⊗ Id)yk. Since βK <

min{mini∈V{ 1∑
j∈N−

C,i
Cij

}, 1
rL2

}, by Lemma 1(ii), the spectral

radius of In−βKL2− 1
nv21

⊤
n is 1−βKrL2

. Then, we have
(1 + rL2

βK) ∥((In − βKL2)⊗ Id) (W2 ⊗ Id)yk∥2

≤(1 + rL2
βK)(1− βKrL2

)2∥(W2 ⊗ Id)yk∥2

≤(1− rL2
βK)∥(W2 ⊗ Id)yk∥2. (50)
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Substituting (49) and (50) into (45) implies (38). Thus, this
lemma is proved. ■

Lemma A.7: If Assumptions 1 and 2 hold, then the follow-
ing inequalities hold for any K = 0, 1, . . . :

(
(v⊤1 v2)γK

2n
− 3(v⊤1 v2)

2γ2KL

2n2
)

K∑
k=0

E∥∇F (x̄k)∥2

≤E(F (x̄0)−F (x∗))+
(K+1)(v⊤1v2)(n+(v⊤1v2)

2γKL)γKσ
2
g

2n2mK

+
(v⊤1 v2)γKL

2(n+ 3(v⊤1 v2)γKL)

2n3

K∑
k=0

E∥(W1 ⊗ Id)xk∥2

+
(2n+3(v⊤1 v2)γKL)∥v1∥2γK

2n2(v⊤1 v2)

K∑
k=0

E∥(W2 ⊗ Id)yk∥2.(51)

Proof. By Assumption 1, Lemma 1 holds. Then, multiplying
1
n (v

⊤
1 ⊗ Id) on both sides of (7) results in

x̄k+1 = x̄k − γK
n

(v⊤1 ⊗ Id)yk. (52)

Thus, setting y = x̄k+1, x = x̄k in Lemma A.1(i) and
substituting (52) into Lemma A.1(i) gives

F (x̄k+1) ≤F (x̄k)+⟨∇F (x̄k), x̄k+1−x̄k⟩+
L

2
∥x̄k+1−x̄k∥2

=F (x̄k)− γK⟨∇F (x̄k),
1

n
(v⊤1 ⊗ Id)yk⟩

+
γ2KL

2
∥ 1
n
(v⊤1 ⊗ Id)yk∥2. (53)

Note that 1
n (v

⊤
1 ⊗ Id)yk =

(v⊤
1 v2)
n ȳk + 1

n ((v
⊤
1 W2) ⊗ Id)yk.

Then, −γK⟨∇F (x̄k), 1
n (v

⊤
1 ⊗Id)yk⟩ = − (v⊤

1 v2)γK

n ⟨∇F (x̄k),
ȳk + 1

v⊤
1 v2

((v⊤1 W2) ⊗ Id)yk⟩. Since ⟨a,b⟩=∥a∥2+∥b∥2−∥a−b∥2

2

for any a,b ∈ Rd, it can be seen that

− γK⟨∇F (x̄k),
1

n
(v⊤1 ⊗ Id)yk⟩

=
(v⊤1 v2)γK

2n

(
∥∇F (x̄k)−

1

v⊤1 v2
((v⊤1 W2)⊗Id)yk−ȳk∥2

−∥∇F (x̄k)∥2 − ∥ 1

v⊤1 v2
((v⊤1 W2)⊗Id)yk+ȳk∥2

)
≤ (v⊤1 v2)γK

2n
∥∇F (x̄k)−

1

v⊤1 v2
((v⊤1 W2)⊗Id)yk−ȳk∥2

− (v⊤1 v2)γK
2n

∥∇F (x̄k)∥2. (54)

By Assumption 1, (21) in Lemma A.3 holds. Then, by (21)
we have

E∥∇F (x̄k)−
1

v⊤1 v2
((v⊤1 W2)⊗Id)yk−ȳk∥2

=E∥(∇F (x̄k)−
1

n

n∑
i=1

∇fi(xi,k))−
1

v⊤1 v2
((v⊤1 W2)⊗Id)yk

+
1

n

n∑
i=1

(∇fi(xi,k)− gi,k) ∥2. (55)

Then, setting m = 2 in (18), and substituting (18), (20) into
(55) imply

E∥∇F (x̄k)−
1

v⊤1 v2
((v⊤1 W2)⊗Id)yk−ȳk∥2

≤2L2

n
E∥(W1⊗Id)xk∥2+

2∥v1∥2

n(v⊤1 v2)
E∥(W2⊗Id)yk∥2+

σ2
g

mK
.(56)

By Assumptions 1 and 2, (27) in Lemma A.4 holds. Thus,
substituting (27), (54), and (56) into (53) results in

EF (x̄k+1)

≤EF (x̄k)+
(v⊤1v2)γKL

2(n+3(v⊤1v2)γKL)

2n3
E∥(W1⊗Id)xk∥2

+
(2n+3(v⊤1 v2)γKL)∥v1∥2γK

2n2(v⊤1 v2)
E∥(W2⊗Id)yk∥2

+

(
− (v⊤1 v2)γK

2n
+
3(v⊤1 v2)

2γ2KL

2n2

)
E∥∇F (x̄k)∥2

+
(v⊤1 v2)(n+ (v⊤1 v2)

2γKL)γKσ
2
g

2n2mK
. (57)

Rearranging (57) gives

(
(v⊤1 v2)γK

2n
− 3(v⊤1 v2)

2γ2KL

2n2
)E∥∇F (x̄k)∥2

≤E(F (x̄k)− F (x̄k+1))

+
(v⊤1v2)γKL

2(n+3(v⊤1v2)γKL)

2n3
E∥(W1⊗Id)xk∥2

+
(2n+3(v⊤1 v2)γKL)∥v1∥2γK

2n2(v⊤1 v2)
E∥(W2⊗Id)yk∥2

+
(v⊤1 v2)(n+ (v⊤1 v2)

2γKL)γKσ
2
g

2n2mK
. (58)

Summing (58) from 0 to K and using F (xK+1) ≥ F (x∗)
result in (51). Thus, this lemma is proved. ■

Lemma A.8: If Assumptions 1-3 and γK < n
4(v⊤

1 v2)L
hold,

then the following inequality holds for any k = 0, . . . ,K:

E(F (x̄k+1)− F (x∗))

≤A(31)
K E∥(W1⊗Id)xk∥2 +A

(32)
K E∥(W2 ⊗ Id)yk∥2

+A
(33)
K E(F (x̄k)− F (x∗)) + u

(3)
k . (59)

Proof. By Assumptions 1 and 2, (57) in Lemma A.7 holds.
Moreover, by Assumption 3 and γK < n

4(v⊤
1 v2)L

, we have

(1− (v⊤
1 v2)γK

2n +
3(v⊤

1 v2)
2γ2

KL
2n2 ) ∥∇F (x̄k)∥2 ≤ (1− (v⊤

1 v2)µγK

n +
3(v⊤1v2)

2γ2
KL

2n2 )(F (x̄k)−F (x∗)). Hence, subtracting F (x∗) from
both sides of (57) implies (59). Then, the lemma is proved. ■

Lemma A.9: If Assumptions 1-3 and αK<min{mini∈V{
1∑

j∈N−
R,i

Rij
}, 1

rL1
}, βK <min{mini∈V{ 1∑

j∈N−
C,i
Cij

}, 1
rL2

}, γK <

n
4(v⊤

1 v2)L
hold, then

EVk+1 ≤ AKEVk + uk. (60)
Proof. By Assumptions 1, 2 and αK<min{mini∈V{

1∑
j∈N−

R,i
Rij

}, 1
rL1

}, βK <min{mini∈V{ 1∑
j∈N−

C,i
Cij

}, 1
rL2

}, Lem-

mas A.5 and A.6 hold. Thus, by Lemma A.1(ii), (30) and
(38) can be rewritten as

E∥(W1 ⊗ Id)xk+1∥2

≤A(11)
K E∥(W1⊗Id)xk∥2 +A

(12)
K E∥(W2 ⊗ Id)yk∥2

+A
(13)
K E(F (x̄k)− F (x∗)) + u

(1)
k , (61)

E∥(W2 ⊗ Id)yk+1∥2

≤A(21)
K E∥(W1⊗Id)xk∥2 +A

(22)
K E∥(W2 ⊗ Id)yk∥2

+A
(23)
K E(F (x̄k)− F (x∗)) + u

(2)
k . (62)
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Moreover, by Assumptions 1-3 and γK < n
4(v⊤

1 v2)L
, Lemma

A.8 holds. Then, (59) can be rewritten as

E(F (x̄k+1)− F (x∗))

≤A(31)
K E∥(W1⊗Id)xk∥2 +A

(32)
K E∥(W2 ⊗ Id)yk∥2

+A
(33)
K E(F (x̄k)− F (x∗)) + u

(3)
k . (63)

Thus, combining (61)-(63) results in (60). ■

APPENDIX B
PROOF OF THEOREM 1

We proceed with the following two cases for Scheme (S1)
and Scheme (S2).

Case 1. If Assumptions 1, 2, 4 holds under Scheme (S1),
then the proof of the almost sure and mean square convergence
of Algorithm 1 is given in the following four steps:

Step 1. First, we prove that there exists G3 > 0 such that
for any K = 0, 1, . . . , E(1⊤

3 VK) ≤ G3. Let ṽ = [ṽ1, ṽ2, ṽ3]
⊤

be a positive vector. Then, by pβ < pα < pγ in Assumption
4, there exists a positive integer K0 such that for any K =
K0,K0 + 1, . . . , the following inequality holds:

[ṽ1, ṽ2, ṽ3, 0]DK ≤ (1+
16ρ2W1

γ2K∥v2∥2L
rL1αK

)[ṽ1, ṽ2, ṽ3, 0]. (64)

By Assumptions 1, 2 and αK<min{mini∈V{ 1∑
j∈N−

R,i
Rij

}, 1
rL1

},

βK<min{mini∈V{ 1∑
j∈N−

C,i
Cij

}, 1
rL2

}, (57) in Lemma A.7 and

(61), (62) in Lemma A.8 hold. Then, by (57), (61), (62), and
(64), we have

E(ṽ⊤Vk+1) ≤[ṽ1, ṽ2, ṽ3, 0]DK

[
Vk

E∥∇F (x̄k)∥2
]
+ṽ⊤uk

≤(1+
16ρ2W1

γ2K∥v2∥2L
rL1

αK
)E(ṽ⊤Vk)+ṽ⊤uk. (65)

Let θ=min{pm − pβ , 2pα−2pζ−pβ , 2pα−pβ , 2pβ−2pη, 2pβ ,
2pγ−pβ+pm}. Then, by Assumption 4, ṽ⊤uk = O( 1

(K+1)θ
)

holds for any k = 0, . . . ,K. Thus, iteratively computing (65)
results in

E(ṽ⊤VK+1) =(1+
16ρ2W1

γ2K∥v2∥2L
rL1

αK
)K+1E(ṽ⊤V0)

+O

(
K∑

k=0

(1+
16ρ2W1

γ2K∥v2∥2L
rL1

αK
)k

1

(K+1)θ

)
. (66)

Since 2pγ − pα ≥ 1 in Assumption 4, limK→∞(1 +
16ρ2

W1
γ2
K∥v2∥2L

rL1
αK

)K+1 < ∞. Then, there exists G1 > 0 such

that for any K = 0, 1, . . . , (1+
16ρ2

W1
γ2
K∥v2∥2L

rL1
αK

)K+1 ≤ G1.
Thus, (66) can be rewritten as

E(ṽ⊤VK+1) ≤G1E(ṽ⊤V0) +O

(
K∑

k=0

1

(K+1)θ

)

=G1E(ṽ⊤V0) +O

(
1

(K + 1)θ−1

)
. (67)

By 2pγ−pα ≥ 1, 2pα−2pζ−pβ ≥ 1, 2pα−pβ ≥ 1, 2pβ ≥ 1,
2pβ − 2pη ≥ 1, pm − pβ ≥ 1 in Assumption 4, we have
θ−1 ≥ 0. Thus, there exists G2 > 0 such that for any for any
K = K0,K0+1, . . . , E(ṽ⊤VK+1) ≤ G2. Let G3=(ṽ1+ ṽ2+

ṽ3)max{E(ṽ⊤V0,E(ṽ⊤V1)), . . . ,E(ṽ⊤VK0−1), G2}. Then, for
any K = 0, 1, . . . , E(1⊤

3 VK) ≤ G3 holds.
Step 2: At this step, we prove that for any i ∈ V ,

limK→∞∥(W1⊗Id)xK+1∥2=0 a.s., limK→∞E∥(W1⊗Id)xK+1∥2
=0. By Step 1, there exists G3 > 0 such that for any
K = 0, 1, . . . , E∥(W1⊗Id)xK∥2≤G3, E∥(W2⊗Id)yK∥2
≤G3, E(F (x̄K) − F (x∗))≤G3. Then, substituting these in-
equalities into (61) gives

E∥(W1⊗Id)xk+1∥2
≤(1−rL1

αK)E∥(W1⊗Id)xk∥2 + u
(1)
k

+
2(1+rL1

αK)γ2Kρ
2
W1
G3

rL1
αK

(1+4∥v2∥2L+
2∥v2∥2L2

n
).(68)

Thus, similar to Step 4 in the proof of [44, Th. 2], it can
be seen that limK→∞ E∥(W1 ⊗ Id)xK+1∥2 = 0. By [59, Th.
4.2.3], ∥(W1⊗Id)xK+1∥2 converges in probability to 0, which
means limK→∞ P(∥(W1 ⊗ Id)xK+1∥2 ≥ δ1) = 0 for any
given δ1 > 0. Hence, by Fatou Lemma ([59, Th. 4.2.2(ii)]),
we have

P(lim inf
K→∞

{∥(W1⊗Id)xK+1∥2≥δ1})≤ lim inf
K→∞

P(∥(W1⊗Id)xK+1∥2≥δ1)

= lim
K→∞

P(∥(W1⊗Id)xK+1∥2≥δ1) = 0. (69)

Moreover, for any given δ1, δ2 > 0, note that
P(∥(W1 ⊗ Id)xK+1∥ ≥ δ1 + δ2, ∥(W1 ⊗ Id)xK∥ ≤ δ1)

≤P(∥(W1 ⊗ Id)(xK+1 − xK)∥ ≥ δ2). (70)

Then, by Markov inequality ([59, Th. 4.1.1]) and (7), (70) can
be rewritten as
P(∥(W1 ⊗ Id)xK+1∥ ≥ δ1 + δ2, ∥(W1 ⊗ Id)xK∥ ≤ δ1)

≤E∥−αK(L1W1⊗Id)xK−αK(L1⊗Id)ζK−γK(W1⊗Id)yK∥2

δ22
.

By Lemma A.3, setting k = K in (12) and substituting (12)
into the inequality above imply
P(∥(W1 ⊗ Id)xK+1∥ ≥ δ1 + δ2, ∥(W1 ⊗ Id)xK∥ ≤ δ1)

≤
3nρ2L1

α2
K + 6ρ2W1

∥v2∥2γ2KL2

nδ22
E∥(W1 ⊗ Id)xK∥2

3ρ2W1
γ2K

δ22
(E∥(W2 ⊗ Id)yK∥2+4∥v2∥2L2E(F (x̄K)−F (x∗)))

+
2dρ2L1

α2
K(σ

(ζ)
k )2

δ22
+

3ρ2W1
∥v2∥2γ2Kσ2

g

δ22mK
. (71)

Since 1
2<pβ<pα<pγ<1, 2pα−2pζ−pβ≥1, 2pα−pβ≥1 in As-

sumption 4 and there exists G3>0 such that E∥(W1⊗Id)xK∥2
≤G3, E∥(W2⊗Id)yK∥2≤G3, E(F (x̄K)−F (x∗))≤G3, we have∑∞

K=0 P(∥(W1 ⊗ Id)xK+1∥ ≥ δ1 + δ2, ∥(W1 ⊗ Id)xK∥ ≤
δ1) < ∞. By Borel-Cantelli Lemma ( [59, Lemma 2.2.2]),
P(∥(W1⊗Id)xK+1∥ ≥ δ1+δ2, ∥(W1⊗Id)xK∥ ≤ δ1, i.o.) =
0. Hence, we have

P(∥(W1⊗Id)xK+1∥>δ1, ∥(W1⊗Id)xK∥≤δ1, i.o.)

=P(
∞⋃
l=1

{∥(W1⊗Id)xK+1∥≥δ1+
1

l
, ∥(W1⊗Id)xK∥<δ1, i.o.})

≤
∞∑
l=1

P(∥(W1⊗Id)xK+1∥≥δ1+
1

l
, ∥(W1⊗Id)xK∥<δ1, i.o.)

=0. (72)
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By (69), (72), and Barndorff-Nielsen Lemma ([60, Th.
2.1.2]), P(∥(W1⊗ Id)xK∥ > δ1, i.o.) = 0. Hence, by [59,
Lemma 2.2.1], limK→∞ ∥(W1⊗Id)xK∥ = 0 a.s., and thus,
limK→∞ ∥(W1⊗Id)xK+1∥2 = 0 a.s..

Step 3: At this step, we prove that limK→∞ ∥∇F (x̄K+1)∥2
= 0 a.s., limK→∞ E∥∇F (x̄K+1)∥2 = 0. Similar to Step 6
in the proof of [44, Th. 2], it can be seen that
lim infK→∞ E∥∇F (x̄K+1)∥2 = 0. Then, by Markov inequal-
ity, for any K = 0, 1, . . . and δ1 > 0 we have

P(
∞⋂

l=K

{∥∇F (x̄l+1)∥ > δ1}) = P( inf
l≥K

∥∇F (x̄l+1)∥ > δ1)

≤E(inf l≥K ∥∇F (x̄l+1)∥)2

δ21
=

E(inf l≥K ∥∇F (x̄l+1)∥2)
δ21

≤ inf l≥K E∥∇F (x̄l+1)∥2

δ21
≤ lim infK→∞ E∥∇F (x̄K+1)∥2

δ21
=0. (73)

Thus, by the definition of the limit inferior and (73), it can be
seen that

P(lim inf
K→∞

{∥∇F (x̄K+1)∥>δ1})=P(
∞⋃

K=0

∞⋂
l=K

{∥∇F (x̄l+1)∥>δ1})

≤
∞∑

K=0

P(
∞⋂

l=K

{∥∇F (x̄l+1)∥>δ1})=0. (74)

Moreover, for any given δ1, δ2 > 0, note that by Assumption
2(i) and (52) we have

P(∥∇F (x̄K+1)∥ ≥ δ1 + δ2, ∥∇F (x̄K)∥ ≤ δ1)

≤P(∥∇F (x̄K+1)−∇F (x̄K)∥ ≥ δ2)

≤P(γKL∥
1

n
(v⊤1 ⊗ Id)yK∥ ≥ δ2). (75)

By Markov inequality and Lemma A.4, setting k = K in (27)
and substituting (27) into (75) imply

P(∥∇F (x̄K+1)∥ ≥ δ1 + δ2, ∥∇F (x̄K)∥ ≤ δ1)

≤
γ2KL

2E∥ 1
n (v

⊤
1 ⊗ Id)yK∥2

δ22

≤3∥v1∥2γ2KL2

n2δ22
E∥(W2⊗Id)yK∥2+6(v⊤1 v2)

2γ2KL
3

n2δ22
E(F (x̄K)−F (x∗))

+
3(v⊤1 v2)

2γ2KL
4

n3δ22
E ∥(W1⊗Id)xK∥2+

(v⊤1 v2)
2γ2KL

2σ2
g

n2mKδ22
. (76)

Since by Step 1, there exists G3>0 such that E∥(W1⊗Id)xK∥2
≤G3, E∥(W2⊗Id)yK∥2≤G3, E(F (x̄K)−F (x∗))≤G3. Thus,
by pγ> 1

2 in Assumption 4, we have
∑∞

K=0 P(∥∇F (x̄K+1)∥ ≥
δ1 + δ2, ∥∇F (x̄K)∥ ≤ δ1) < ∞. By Borel-Cantelli Lemma,
P(∥∇F (x̄K+1)∥ ≥ δ1 + δ2, ∥∇F (x̄K)∥ ≤ δ1, i.o.) = 0.
Hence, we have

P(∥∇F (x̄K+1)∥ > δ1, ∥∇F (x̄K)∥ ≤ δ1, i.o.)

=P(
∞⋃
l=1

{∥∇F (x̄K+1)∥≥δ1+
1

l
, ∥∇F (x̄K)∥<δ1, i.o.})

≤
∞∑
l=1

P(∥∇F (x̄K+1)∥≥δ1+
1

l
, ∥∇F (x̄K)∥<δ1, i.o.)

=0. (77)

By (74), (77), and Barndorff-Nielsen Lemma,
P(∥∇F (x̄K)∥ > δ1, i.o.) = 0. Hence, by [59,
Lemma 2.2.1], limK→∞ ∥∇F (x̄K)∥ = 0 a.s., and thus,
limK→∞ ∥∇F (x̄K+1)∥2 = 0 a.s..

Furthermore, by Step 1 and Lemma A.1(ii),
E∥∇F (x̄K+1)∥2≤2LG3 for any K = 0, 1, . . . . Then,
by [59, Th. 4.2.1], {∥∇F (x̄K+1)∥2,K = 0, 1, . . . } are
uniformly integrable. Thus, by [59, Th. 4.2.3], limK→∞
E∥∇F (x̄K+1)∥2 = 0.

Step 4: At this step, we prove that limK→∞∥∇F (xi,K+1)∥2
= 0 a.s., limK→∞ E∥∇F (xi,K+1)∥2 = 0 for any i ∈ V . By
Assumption 2(i), the following inequality holds for any i ∈ V:

∥∇F (xi,K+1)∥2

=∥∇F (x̄K+1)+∇F (xi,K+1)−∇F (x̄K+1)∥2

≤2∥∇F (x̄K+1)∥2+2∥∇F (xi,K+1)−∇F (x̄K+1)∥2

≤2∥∇F (x̄K+1)∥2+2L2∥xi,K+1 − x̄K+1∥2

≤2∥∇F (x̄K+1)∥2+2L2∥(W1⊗Id)xK+1∥2. (78)

Then, by Steps 2 and 3, we have limK→∞∥∇F (xi,K+1)∥2
= 0 a.s., limK→∞ E∥∇F (xi,K+1)∥2 = 0 for any i ∈ V .
Therefore, the almost sure and mean square convergence of
Algorithm 1 with Scheme (S1) is proved.

Case 2. If Assumptions 1, 2, 5 holds under Scheme (S2),
then the proof of the almost sure and mean square convergence
of Algorithm 1 is given in the following three steps:

Step 1: First, we give the upper bound of
∑K+1

k=0 Vk. Since
step-sizes αK = α, βK = β, γK = γ are constants under
Scheme (S2), the matrix MK is a constant matrix. Then, by
Lemmas A.5 and A.6, we have

Vk+1 ≤ MKVk + bE∥∇F (x̄k)∥2+uk. (79)

Iteratively computing (79) results in Vk+1 ≤ Mk+1
K V0 +∑k

l=0 Mk−l
K (bE∥∇F (x̄l)∥2+ul). Thus, summing the inequal-

ity above from 0 to K + 1 gives

K+1∑
k=0

Vk ≤(

K+1∑
k=0

Mk
K)V0 +

K∑
k=0

k∑
l=0

Mk−l
K (bE∥∇F (x̄l)∥2+ul)

≤(

∞∑
k=0

Mk
K)(V0 +

K∑
k=0

(bE∥∇F (x̄k)∥2+uk)). (80)

By β< 1
rL2

,α<min{ 1
rL1
,
√
330n(v⊤1 v2)rL2

β

66n∥v1∥ρW2
ρL1

},γ<min{ n
15(v⊤

1 v2)L
,

√
3nrL1

α

6ρW1
∥v2∥L ,

√
55(v⊤1 v2)rL2

β

33∥v1∥∥v2∥ρW2
L} in Assumption 5, we have

MK s̃ < s̃. By Lemma A.2(i), ρMK
< 1 holds. Thus, by

Gelfand formula ( [57, Cor. 5.6.16]), I2 − MK is invertible
and its inverse matrix is (I2 − MK)−1 =

∑∞
k=0 Mk

K . Hence,
(80) can be rewritten as

K+1∑
k=0

Vk≤(I2−MK)−1(V0+

K∑
k=0

(bE∥∇F (x̄k)∥2+uk)). (81)

Step 2: At this step, we prove that limK→∞∥∇F (x̄K+1)∥2
=0 a.s., limK→∞ E∥∇F (x̄K+1)∥2 = 0. By Lemma A.7,
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substituting (81) into (51) implies

(
(v⊤1 v2)γK

2n
− 3(v⊤1 v2)

2γ2KL

2n2
)

K∑
k=0

E∥∇F (x̄k)∥2

≤E(F (x̄0)−F (x∗))+
(K+1)(v⊤1v2)(n+(v⊤1v2)

2γKL)γKσ
2
g

2n2mK

+ c⊤
K∑

k=0

Vk

≤E(F (x̄0)−F (x∗))+
(K + 1)(n2 + (v⊤1 v2)

2γL)γσ2
g

2n2mK

+ c⊤(I2−MK)−1V0+

K∑
k=0

c⊤(I2−MK)−1uk

+ c⊤(I2−MK)−1b)
K∑

k=0

E∥∇F (x̄k)∥2. (82)

Rearranging (82) gives

(
(v⊤1 v2)γ

2n
− 3(v⊤1 v2)

2γ2L

2n2
−c⊤(I2−MK)−1b)

K∑
k=0

E∥∇F (x̄k)∥2

≤E(F (x̄0)−F (x∗))+
(K + 1)(n2 + (v⊤1 v2)

2γL)γσ2
g

2n2mK

+ c⊤(I2−MK)−1V0+

K∑
k=0

c⊤(I2−MK)−1uk. (83)

By γ<min{1,
√
nrL1

α

8ρW1
∥v2∥L ,

√
2rL2

β

6ρW2
L , rL1

rL2
β

24ρW1
ρW2

ρL1
L} in Assump-

tion 5, we have

det(I2−MK) = A
(11)
K A

(22)
K −A(12)

K A
(21)
K >

5

6
rL1

rL2
αβ. (84)

Since γ < min{1,
√
6nrL1

α

24ρW1
∥v2∥L ,

√
2n(v⊤1 v2)

3rL2
β

6ρW2
∥v1∥∥v2∥L ,

√
2(v⊤1 v2)rL2

β

6ρW2
∥v1∥∥v2∥L ,

(v⊤1 v2)rL1
rL2

β

36∥v1∥∥v2∥ρW2
L

√
6

4ρ2
W1

ρ2
L1

+r2L1

,

√
2n(v⊤1 v2)

3rL2
β

6ρW2
∥v1∥∥v2∥L } in Assump-

tion 5, by (84), we have

c⊤(I2−MK)−1b =
1

det(I2−MK)
(c1b1(1−A(22)

K )+c2b1A
(21)
K

+ c1b2A
(12)
K +c2b2(1−A(11)

K ))

<
2(v⊤1 v2)

5n
γ. (85)

By γ< n
15(v⊤

1 v2)L
in Assumption 5, we have 3(v⊤

1 v2)
2γ2L

2n2 <

(v⊤1 v2)γ
10n . Thus, combining this inequality and (85) leads to

(v⊤1 v2)γ
2n − 3(v⊤

1 v2)
2γ2L

2n2 −c⊤(I2−MK)−1b > (v⊤1 v2)γ
2n − (v⊤1 v2)γ

10n

− 2(v⊤1 v2)γ
5n =0. Moreover, since mK = ⌊pKm⌋ + 1 and the

definition of uk, there exists G4 > 0 such that for any
K=0, 1, . . . , E(F (x̄0)−F (x∗))+

(K+1)(v⊤
1 v2)(n+(v

⊤
1 v2)

2γL)γσ2
g

2n2mK

+c⊤(I2−MK)−1V0+
∑K

k=0 c⊤(I2−MK)−1 uk ≤ G4. Then,
for any K = 0, 1, . . . , by (83) we have

K∑
k=0

E∥∇F (x̄k)∥2≤
G4

(v⊤1 v2)γ
2n −3(v⊤

1 v2)2γ2L
2n2 −c⊤(I2−MK)−1b

.

(86)

Since the series in (86) is uniformly bounded for any
K = 0, 1, . . . , we have limK→∞ E∥∇F (x̄K+1)∥2=

limK→∞ E∥∇F (x̄K)∥2=0. Then, by the monotone conver-
gence theorem ([59, Th. 4.2.2(i)]), E

∑∞
K=0∥∇F (x̄K)∥2 con-

verges, which implies
∑∞

K=0∥∇F (x̄K)∥2 converges almost
surely. Thus, limK→∞∥∇F (x̄K+1)∥2=0, a.s..

Step 3: At this step, we prove that limK→∞∥∇F (x̄i,K+1)∥2
=0 a.s., limK→∞E∥∇F (x̄i,K+1)∥2=0 for any i ∈ V . By (81)
and (86), the following inequality holds for any K = 0, 1, . . . :

K+1∑
k=0

E∥(W1⊗Id)xk∥2

≤
c⊤(I2−MK)−1(V0+

∑K
k=0(bE∥∇F (x̄k)∥2+uk))

min{c1, c2}

≤
(
(v⊤1 v2)γ

2n − 3(v⊤
1 v2)

2γ2L
2n2 )G4

min{c1, c2}( (v
⊤
1 v2)γ
2n −3(v⊤

1 v2)2γ2L
2n2 −c⊤(I2−MK)−1b)

.(87)

Since the series in (87) is uniformly bounded for any K =
0, 1, . . . , we have limK→∞E∥(W1⊗Id)xK+1∥2=0. Then, by
the monotone convergence theorem, E

∑∞
K=0∥(W1⊗Id)xK∥2

converges, which implies
∑∞

K=0∥(W1 ⊗ Id)xK∥2 converges
almost surely. Hence, limK→∞ ∥(W1 ⊗ Id)xK+1∥2=0, a.s..
Therefore, by (78), the almost sure and mean square conver-
gence of Algorithm 1 with Scheme (S2) is proved. ■

APPENDIX C
PROOF OF THEOREM 2

Let 0<Γ<1 and ωK=Γmin{rL1
αK , rL2

βK ,
(v⊤

1 v2)µγK

n }.
Then, the following four steps are given to prove Theorem 1.

Step 1: First, we prove that there exists a positive integer
K0 such that for any K = K0,K0 + 1, . . . ,

ρAK
≤ 1− ωK . (88)

Since 2pα − 2pζ − pβ ≥ 1, 1
2 < pβ < pα < pγ < 1, and

2pγ − pα ≥ 1 in Assumption 4, there exists a positive vector
ũ ∈ R3 and a positive integer K0 such that for any K =
K0,K0 + 1, . . . , the following inequality holds:

AK ũ ≤ (1− ωK)ũ. (89)
Then, by (89) and Lemma A.2(i), (88) holds for any K =
K0,K0 + 1, . . . .

Step 2: At this step, we prove that there exists a positive
vector t̃ = [t̃1, t̃2, t̃3]

⊤ such that for any K = 0, 1, . . . ,
E(t̃⊤VK+1) = O( 1

(K+1)θ−max{pα,pβ,pγ} ). Note that for any
K = K0,K0 + 1, . . . , (88) holds. Then, by Lemma A.2(ii),
there exists a positive vector t̃ = [t̃1, t̃2, t̃3]

⊤ such that
t̃⊤AK = ρAK

t̃⊤ ≤ (1 − ωK)t̃⊤. Moreover, by Assumptions
1-4, (60) in Lemma A.8 holds. Then, multiplying t̃⊤ on both
sides of (60) implies

E(t̃⊤Vk+1) ≤t̃⊤AKEVk + t̃⊤uk

≤(1− ωK)E(t̃⊤Vk) + t̃⊤uk. (90)

By Assumption 4, t̃⊤uk=O( a4+1
a4(K+1)θ

) holds for any k =
0, . . . , K. Thus, iteratively computing (90) results in

E(t̃⊤VK+1) =(1−ωK)K+1E(t̃⊤V0)+O

(
K∑

k=0

(1−ωK)k
a4+1

a4(K+1)θ

)

=(1−ωK)K+1E(t̃⊤V0)+O
(

a4 + 1

a4ωK(K+1)θ

)
. (91)

By the definition of ωK , it can be seen that
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O

(
1

ωK(K+1)θ

)
= O

(
1

(K+1)θ−max{pα,pβ ,pγ}

)
,

(1− ωK)K+1 = exp ((K + 1) ln(1− ωK))

≤ exp (−(K+1)ωK) = exp
(
−O

(
(K+1)1−max{pα,pβ ,pγ}

))
= o

(
1

(K+1)θ−max{pα,pβ ,pγ}

)
. (92)

By (92), we have E(t̃⊤VK+1)=O( 1

(K+1)θ−max{pα,pβ,pγ} ) for
any K=K0, K0+1, . . . . Thus, there exists S0 > 0 such that
E(t̃⊤VK+1)≤ S0

(K+1)θ−max{pα,pβ,pγ} . Let S = max{E(t̃⊤V1),
2θ−max{pα,pβ ,pγ}E(t̃⊤V2), . . . , (K0 − 1)θ−max{pα,pβ ,pγ}E(t̃⊤
VK0−1),S0}. Then, for any K = 0, 1, . . . , we have
E(t̃⊤VK+1)≤ S

(K+1)θ−max{pα,pβ,pγ} , which leads to

E(t̃⊤VK+1) = O

(
a4 + 1

a4(K + 1)θ−max{pα,pβ ,pγ}

)
. (93)

Step 3: At this step, we prove that for any i ∈ V and
K=0, 1, . . . , E∥∇F (xi,K+1)∥2=O( 1

(K+1)θ−max{pα,pβ,pγ} ). By
Lemma A.1(i), we have

F (xi,K+1)−F (x̄K+1)

≤⟨∇F (x̄K+1), xi,K+1−x̄K+1⟩+
L

2
∥x̄K+1 − xi,K+1∥2. (94)

Note that ⟨a,b⟩ ≤ ∥a∥2+∥b∥2

2 for any a,b ∈ Rd. Then, (94)
can be rewritten as

F (xi,K+1)− F (x̄K+1)

≤∥∇F (x̄K+1)∥2 + ∥x̄K+1−xi,K+1∥2

2
+
L

2
∥x̄K+1−xi,K+1∥2

=
L+ 1

2
∥x̄K+1 − xi,K+1∥2 +

∥∇F (x̄K+1)∥2

2
. (95)

By Lemma A.1(ii), ∥∇F (x̄K+1)∥2 ≤ 2L(F (x̄K+1) − F (x∗)).
Substituting it into (95) gives F (xi,K+1)−F (x̄K+1) ≤ L+1

2
∥x̄K+1 − xi,K+1∥2+L(F (x̄K+1)−F (x∗)). Thus, we have

F (xi,K+1)− F (x̄K+1)

≤L+ 1

2

n∑
i=1

∥x̄K+1 − xi,K+1∥2 + L(F (x̄K+1)− F (x∗))

=
L+ 1

2
∥(W1 ⊗ Id)xK+1∥2 + L(F (x̄K+1)− F (x∗)). (96)

Then, by (96) it can be seen that
F (xi,K+1)− F (x∗)

= (F (xi,K+1)− F (x̄K+1)) + (F (x̄K+1)− F (x∗))

≤L+ 1

2
∥(W1 ⊗ Id)xK+1∥2 + (L+ 1)(F (x̄K+1)− F (x∗))

≤(L+ 1)
(
1⊤
3 EVK+1

)
= O

(
E(t̃⊤VK+1)

)
. (97)

Thus, combining (93) and (97) gives E(F (xi,K+1)−F (x∗)) =
O
(

a4+1

a4(K+1)θ−max{pα,pβ,pγ}

)
. By Lemma A.1(ii), we have

E∥∇F (xi,K+1)∥2 ≤2LE(F (xi,K+1)− F (x∗))

=O(
a4 + 1

a4(K + 1)θ−max{pα,pβ ,pγ}
)

=O(
1

(K + 1)θ−max{pα,pβ ,pγ}
). (98)

Hence, the polynomial mean square convergence rate
is achieved.

Step 4: At this step, we prove that the oracle complexity of
Algorithm 1 with Scheme (S1) is O(φ− 3+3φ

1−3φ ) for any 0 < φ <

1
3 . When pα=1−2φ

11 , pβ= 2
3 (1+

3φ
11 ), pγ=1− φ

11 , pm=φ, pζ=
pη =

2φ
11 for any 0 < φ < 1

3 , by Step 3, E∥∇F (xi,K+1)∥2 =
O( 1

(K+1)
1
3
−φ

) holds for any i∈V and K=0, 1, . . . . Thus, there

exists Φ > 0 such that the following inequality holds:

E∥∇F (xi,K+1)∥2 ≤ Φ

(K + 1)
1
3−φ

. (99)

Let K = ⌊(Φφ )
3

1−3φ ⌋. Then, by (99) we have

E∥∇F (xi,K+1)∥2≤
Φ

(K+1)
1
3−φ

<
Φ

(Φφ )
( 1
3−φ) 3

1−3φ

=φ. (100)

Thus, by (100) and Definition 1, xK+1 is a φ-suboptimal
solution. Since N(φ) is the smallest integer such that xN(φ)

is a φ-suboptimal solution, we have

N(φ) ≤ ⌊(Φ
φ
)

3
1−3φ ⌋+ 1. (101)

Since mK=⌊a4Kφ⌋+1=⌊a4⌊(Φφ )
3

1−3φ ⌋φ⌋+1, by Definition 2
and (101), the oracle complexity of Algorithm 1 with Scheme
(S1) is given as follows:

N(φ)∑
k=0

mK =(N(φ) + 1)(⌊a4⌊(
Φ

φ
)

3
1−3φ ⌋φ⌋+ 1)

≤(⌊(Φ
φ
)

3
1−3φ ⌋+ 2)(a4⌊(

Φ

φ
)

3
1−3φ ⌋+ 1)

=O(φ− 3+3φ
1−3φ ).

Therefore, this theorem is proved. ■

APPENDIX D
PROOF OF THEOREM 3

The following two steps are given to prove Theorem 2.
Step 1: First, we prove that Algorithm 1 with

Scheme (S2) achieves the exponential mean square conver-
gence rate. By β< 1

rL2
, α<min{ 1

rL1
,

√
nrL2

6ρW1
ρL1

∥v1∥β}, γ <

min{ n
15(v⊤1 v2)L

, Q1α,Q2β} in Assumption 5, we have
AK s̃<s̃. By Lemma A.2(i), we have ρAK

<1. Thus, by Lemma
A.2(ii), there exists a positive vector r̃=[r̃1, r̃2, r̃3]⊤ such that
r̃⊤AK=ρAK

r̃⊤. Moreover, by Assumptions 1-3, 5, (60) in
Lemma A.8 holds. Then, multiplying r̃⊤ on both sides of (60)
implies that for any k = 0, . . . ,K,
E(r̃⊤Vk+1)≤ r̃⊤AKEVk+r̃⊤uk=ρAK

E(r̃⊤Vk)+r̃⊤uk. (102)
Iteratively computing (102) gives

Er̃⊤VK+1 ≤ ρK+1
AK

Er̃⊤VK +

K∑
k=0

ρK−k
AK

r̃⊤uk. (103)

By Assumption 5, r̃⊤uk =O(p−K
m +p2Kζ +p2Kη ) for any k =

0, . . . ,K. Then, (103) can be rewritten as

Er̃⊤VK+1 =ρK+1
AK

Er̃⊤V0 +O(max{ρAK
,
1

pm
}K)

+O(max{ρAK
, p2ζ}K) +O(max{ρAK

, p2η}K)

=O(max{ρAK
,
1

pm
, p2ζ , p

2
η}K). (104)

As shown in Step 3 of Appendix C, F (xi,K+1) − F (x∗) =

O
(
E(r̃⊤VK+1)

)
. Hence, by (104) and Lemma A.1(ii), the

exponential mean convergence rate of Algorithm 1 is achieved.
Step 2: Next, we prove that the oracle complexity of

Algorithm 1 with Scheme (S2) is O( 1
φ ln 1

φ ). For any 0<φ<
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min{1, n2

15(v⊤
1 v2)2L

,mini∈V{ 1∑
j∈N−

R,i
Rij

},mini∈V{ 1∑
j∈N−

C,i
Cij

},

1
rL1
, 1
rL2

}, let β = φ, α=min{φ,
√
330n(v⊤1 v2)rL2

φ

132n∥v1∥ρW2
ρL1

},γ=min{ 1
2 ,

n
30(v⊤1 v2)L

,Q1α
2 , Q2φ

2 }, pm=min{ 1
φ ,

1
ρAK

}, pζ= pη=φ. Then,
by Theorem 2, there exists Φ > 0 such that for any i ∈ V ,
K = 0, 1, . . . ,

E∥∇F (xi,K+1)∥2≤Φmax{ρAK
, φ}K . (105)

Let K=⌊max{ lnφ−ln Φ
lnφ , lnφ−ln Φ

lnΦ }⌋+1. Then, by (105) we
have E∥∇F (xi,K+1)∥2 < φ. By Definition 1, xK+1 is a φ-
suboptimal solution. Thus, by the definition of N(φ), we have

N(φ)≤⌊max{ lnφ−lnΦ

lnφ
,
lnφ−lnΦ

lnΦ
}⌋+2. (106)

Since mK = ⌊min{ 1
φ ,

1
ρAK

}K⌋+1. Thus, by Definition 2 and
(106), the oracle complexity of Algorithm 1 with Scheme (S2)
is given as follows:

N(φ)∑
k=0

mK

=(N(φ)+1)(⌊min{ 1
φ
,

1

ρAK

}⌊max{ lnφ−ln Φ
lnφ , lnφ−ln Φ

ln Φ }⌋+1⌋+1)

≤(⌊max{ lnφ−lnΦ

lnφ
,
lnφ−lnΦ

lnΦ
}⌋+3)·

(min{ 1
φ
,

1

ρAK

}max{ lnφ−ln Φ
lnφ , lnφ−ln Φ

ln Φ }+1+1)

=O(
1

φ
ln

1

φ
).

Therefore, this theorem is proved. ■

APPENDIX E
PROOF OF LEMMA 2

The following two steps are given to prove Lemma 2.
Step 1: We compute ∥∆yk∥1 for any k = 0, . . . ,K. When

k = 0, by Definition 5, we have

∥∆y0∥1= sup
Adj(D,D′)

∥y0−y′0∥1= sup
Adj(D,D′)

∥g0−g′0∥1. (107)

Since D,D′ are adjacent, by Definition 3, there exists exactly
one pair of data samples ξi0,l0 , ξ

′
i0,l0

such that (3) holds. This
implies that gj,k = g′j,k holds for any agent j ̸= i0 and k =
0, . . . ,K. Thus, (107) can be rewritten as

∥∆y0∥1 = sup
Adj(D,D′)

∥gi0,0 − g′i0,0∥1. (108)

Note that mK different data samples are taken uniformly from
D, D′, respectively. Then, there exists at most one pair of data
samples λi0,0,l1 , λ

′
i0,0,l1

such that λi0,0,l1 = ξi0,l0 , λ′i0,0,l1 =
ξ′i0,l0 . Thus, by (108) and (5) we have

∥∆y0∥1

= sup
Adj(D,D′)

∥∥∥∥∥ 1

mK

mK∑
l=1

(gi0(xi0,0, λi0,0,l)−gi0(xi0,0, λ′i0,0,l))

∥∥∥∥∥
1

= sup
Adj(D,D′)

∥∥∥∥ 1

mK
(gi0(xi0,0, λi0,0,l1)− gi0(xi0,0, λ

′
i0,0,l1))

∥∥∥∥
1

≤ 1

mK

∥∥gi0(xi0,0, ξi0,l0)− gi0(xi0,0, ξ
′
i0,l0)

∥∥
1
≤ C

mK
. (109)

When k = 1, by Definition 5, we have

∥∆y1∥1 = sup
Adj(D,D′)

∥y1 − y′1∥1

= sup
Adj(D,D′)

n∑
i=1

∥(1−βK
∑

j∈N−
C,i

Cij)(yi,0 − y′i,0)

− βK
∑

j∈N−
C,i

Cij(y̆j,0 − y̆′j,0)

+ (gi,1 − g′i,1) + (gi,0 − g′i,0)∥1. (110)

Note that the sensitivity is obtained by computing the
maximum magnitude of the mapping q when changing
one data sample. Then, observations (x0, y0, . . . , xK , yK),
(x′0, y

′
0, . . . , x

′
K , y

′
K) of Algorithm 1 between adjacent datasets

D, D′ should be equal such that only the effect of changing
one data sample is considered. Thus, x̆j,k = x̆′j,k, y̆j,k = y̆′j,k
holds for any agent j ∈ N−

R,i∪N−
C,i and k = 0, . . . ,K. Then,

(110) can be rewritten as

∥∆y1∥1 = sup
Adj(D,D′)

∥y1 − y′1∥1

= sup
Adj(D,D′)

n∑
i=1

∥(1−βK
∑

j∈N−
C,i

Cij)(yi,0 − y′i,0)

+ (gi,1 − g′i,1) + (gi,0 − g′i,0)∥1. (111)

Since yj,0 = y′j,0, gj,0 = g′j,0, gj,1 = g′j,1 hold for any agent
j ̸= i0, by (109), (111) can be rewritten as

∥∆y1∥1 ≤ sup
Adj(D,D′)

∥(1−βK
∑

j∈N−
C,i0

Ci0j)(yi0,0 − y′i0,0)∥1

+ sup
Adj(D,D′)

∥gi0,1−g′i0,1∥1+ sup
Adj(D,D′)

∥gi0,0−g′i0,0∥1. (112)

Note that D,D′ are adjacent. Then, there exists at most one
pair of data samples λi0,1,l2 , λ

′
i0,1,l2

such that λi0,1,l2 = ξi0,l0 ,
λ′i0,1,l2 = ξ′i0,l0 . Hence, (112) can be rewritten as

∥∆y1∥1 ≤ sup
Adj(D,D′)

∥(1−βK
∑

j∈N−
C,i0

Ci0j)(yi0,0−y′i0,0)∥1+
2C

mK

=|1− βK
∑

j∈N−
C,i0

Ci0j |∥∆y0∥1 +
2C

mK

≤|1− βK
∑

j∈N−
C,i0

Ci0j |
C

mK
+

2C

mK
. (113)

When k = 2, . . . ,K, by Definition 5, we have
∥∆yk∥1 = sup

Adj(D,D′)

∥yk − y′k∥1

= sup
Adj(D,D′)

n∑
i=1

∥(1−βK
∑

j∈N−
C,i

Cij)(yi,k−1 − y′i,k−1)

− βK
∑

j∈N−
C,i

Cij(y̆j,k−1 − y̆′j,k−1)

+ (gi,k − g′i,k) + (gi,k−1 − g′i,k−1)∥1. (114)

Since gj,l = g′j,l, yj,l = y′j,l, y̆j,l = y̆′j,l hold for any agent
j ̸= i0 and l = 0, . . . , k − 1, (114) can be rewritten as

∥∆yk∥1 = sup
Adj(D,D′)

∥(1−βK
∑

j∈N−
C,i0

Ci0j)(yi0,k−1−y′i0,k−1)∥1

+ sup
Adj(D,D′)

∥gi0,k−g′i0,k∥1+ sup
Adj(D,D′)

∥gi0,k−1−g′i0,k−1∥1. (115)

Note that D,D′ are adjacent. Then, there exists at most one
pair of data samples λi,k,lk+1

, λ′i,k,lk+1
such that λi,k,lk+1

=
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ξi,l0 , λ′i,k,lk+1
= ξ′i,l0 . Hence, (115) can be rewritten as

∥∆yk∥1 ≤ |1−βK
∑

j∈N−
C,i0

Ci0j |∥∆yk−1∥1 +
2C

mK
. (116)

Iteratively computing (116) implies

∥∆yk∥1≤
k−1∑
l=0

|1−βK
∑

j∈N−
C,i0

Ci0j |l
2C

mK
+|1−βK

∑
j∈N−

C,i0

Ci0j |k
C

mK
. (117)

Step 2: Next, we compute ∥∆xk∥1 for any k = 0, . . . ,K.
When k = 0, since the initial value xi,0 = x′i,0 for any i ∈ V ,
we have ∥∆x0∥1 = 0. When k = 1, by Definition 5, we have

∥∆x1∥1 = sup
Adj(D,D′)

∥x1 − x′1∥1

= sup
Adj(D,D′)

n∑
i=1

∥(1−αK

∑
j∈N−

R,i

Rij)(xi,0−x′i,0)

− αK

∑
j∈N−

R,i

R
(1)
ij (x̆j,0−x̆

′
j,0)−γK(yi,0−y′i,0)∥1.(118)

Note that the initial value xi,0 = x′i,0 and x̆j,0 = x̆′j,0 for any
i ∈ V , j ∈ N−

R,i. Then, by (109), (118) can be rewritten as

∥∆x1∥1 = γK sup
Adj(D,D′)

∥yi0,0 − y′i0,0∥1 ≤ γKC

mK
. (119)

When k = 2, . . . ,K, by Definition 5, we have

∥∆xk∥1= sup
Adj(D,D′)

∥xk − x′k∥1

= sup
Adj(D,D′)

n∑
i=1

∥(1−αK

∑
j∈N−

R,i

Rij)(xi,k−1−x′i,k−1)

−αK

∑
j∈N−

R,i

Rij(x̆j,k−1−x̆′j,k−1)−γK(yi,k−1−y′i,k−1)∥1.(120)

Since xi,0 = x′i,0, yj,l = y′j,l hold for any i ∈ V , j ∈ N−
R,i,

l = 0, . . . , k− 1, xj,l = x′j,l holds for any agent j ̸= i0. Thus,
(120) can be rewritten as

∥∆xk∥1 = sup
Adj(D,D′)

∥(1−αK

∑
j∈N−

R,i0

Ri0j)(xi0,k−1−x′i0,k−1)

− γK(yi0,k−1−y′i0,k−1)∥1. (121)

Note that supAdj(D,D′) ∥yi0,k−y′i0,k∥1 = ∥∆yk∥1 for any k =
0, . . . ,K. Then, (121) can be rewritten as

∥∆xk∥1 ≤|1−αK

∑
j∈N−

R,i0

Ri0j | sup
Adj(D,D′)

∥xi0,k−1−x′i0,k−1∥1

+ γK sup
Adj(D,D′)

∥yi0,k−1 − y′i0,k−1∥1

=|1−αK

∑
j∈N−

R,i0

Ri0j |∥∆xk−1∥1+γK∥∆yk−1∥1. (122)

Iteratively computing (122) implies

∥∆xk∥1≤ γK

k−1∑
l=0

|1−αK

∑
j∈N−

R,i0

Ri0j |k−l−1∥∆yl∥1. (123)

Therefore, by (109), (113), (117), (119) and (123), this lemma
is proved. ■

APPENDIX F
PROOF OF LEMMA 3

For any observation set O ⊆ R2n(K+1)d, let KD,O =
{(ζ0, η0, . . . , ζK , ηK): M(D)∈O}, KD′,O={(ζ ′0, η′0, . . . , ζ ′K ,
η′K): M(D′)∈O} be sets of all possible state and track-
ing variables under the observation set O for adja-
cent datasets D and D′, respectively. Then, for any
(ζ0, η0, . . . , ζK , ηK)∈KD,O there exists a unique (ζ ′0, η

′
0,

. . . , ζ ′K , η
′
K)∈KD′,O such that (x̆0, y̆0, . . . , x̆K , y̆K) =

(x̆′0, y̆
′
0, . . . , x̆

′
K , y̆

′
K). Thus, we can define a bijection B :

KD,O → KD′,O such that B((ζ0, η0, . . . , ζK , ηK)) =
(ζ ′0, η

′
0, . . . , ζ

′
K , η

′
K) satisfies

(x0 + ζ0, y0 + η0, . . . , xK + ζK , yK + ηK)

=(x̆0, y̆0, . . . , x̆K , y̆K) = (x̆′0, y̆
′
0, . . . , x̆

′
K , y̆

′
K)

=(x′0 + ζ ′0, y
′
0 + η′0, . . . , x

′
K + ζ ′K , y

′
K + η′K). (124)

Let x(q)i,k , y(q)i,k , ζ(q)i,k , η(q)i,k , x(q)′i,k , y(q)′i,k , ζ(q)′i,k , η(q)′i,k be the q-
th coordinate of xi,k, yi,k, ζi,k, ηi,k, x′i,k, y′i,k, ζ ′i,k, η′i,k,
respectively. Then, by (124), the following holds for any
k = 0, . . . ,K, i = 1, . . . , n, q = 1, . . . , d:

x
(q)
i,k − x

(q)′
i,k =ζ

(q)′
i,k − ζ

(q)
i,k ,

y
(q)
i,k − y

(q)′
i,k =η

(q)′
i,k − η

(q)
i,k . (125)

Note that probability density functions of (ζ0, η0, . . . , ζK , ηK)
and (ζ ′0, η

′
0, . . . , ζ

′
K , η

′
K) are given as follows, respectively:

p(ζ, η) =

K∏
k=0

n∏
i=1

d∏
q=1

p(ζ
(q)
i,k ;σ

(ζ)
k )p(η

(q)
i,k ;σ

(η)
k ),

p(ζ ′, η′) =

K∏
k=0

n∏
i=1

d∏
q=1

p(ζ
(q)′
i,k ;σ

(ζ)
k )p(η

(q)′
i,k ;σ

(η)
k ). (126)

Then, by (126), p(ζ,η)
p(B(ζ,η)) can be rewritten as

p(ζ, η)

p(B(ζ, η))

=

K∏
k=0

n∏
i=1

d∏
q=1

p(ζ
(q)
i,k ;σ

(ζ)
k )p(η

(q)
i,k ;σ

(η)
k )

p(ζ
(q)′
i,k ;σ

(ζ)
k )p(η

(q)′
i,k ;σ

(η)
k )

=

K∏
k=0

n∏
i=1

d∏
q=1

exp

(
|ζ(q)′i,k |−|ζ(q)i,k |

σ
(ζ)
k

)
exp

(
|η(q)′i,k |−|η(q)i,k |

σ
(η)
k

)

≤
K∏

k=0

n∏
i=1

d∏
q=1

exp

(
|ζ(q)′i,k −ζ(q)i,k |

σ
(ζ)
k

)
exp

(
|η(q)′i,k −η(q)i,k |

σ
(η)
k

)
.(127)

Substituting (125) into (127) implies

p(ζ, η)

p(B(ζ, η))
≤

K∏
k=0

n∏
i=1

d∏
q=1

exp

(
|x(q)i,k−x

(q)′
i,k |

σ
(ζ)
k

)
exp

(
|y(q)i,k−y

(q)′
i,k |

σ
(η)
k

)

=

K∏
k=0

exp

(
∥xk−x′k∥1

σ
(ζ)
k

)
exp

(
∥yk−y′k∥1
σ
(η)
k

)

=exp

(
K∑

k=0

(
∥∆xk∥1
σ
(ζ)
k

+
∥∆yk∥1
σ
(η)
k

))
. (128)
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Let ε =
∑K

k=0(
∥∆xk∥1

σ
(ζ)
k

+ ∥∆yk∥1

σ
(η)
k

). Then, by (128) we have

P(M(D) ∈ O)

P(M(D′) ∈ O)
=

∫
KD,O

p(ζ, η)dζdη∫
KD′,O

p(ζ ′, η′)dζ ′dη′

=

∫
KD,O

p(ζ, η)dζdη∫
KD′,O

p(B(ζ, η))dζ ′dη′
=

∫
KD,O

p(ζ, η)dζdη∫
B−1(KD′,O)

p(B(ζ, η))dζdη

=

∫
KD,O

p(ζ, η)dζdη∫
KD,O

p(B(ζ, η))dζdη
≤
eε
∫
KD,O

p(B(ζ, η))dζdη∫
KD,O

p(B(ζ, η))dζdη
= eε.

Therefore, this lemma is proved. ■

REFERENCES

[1] S. Pu, W. Shi, J. Xu, and A. Nedić, “Push-pull gradient methods for
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